ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
Collection
Keywords
  • 1
    Publication Date: 2019-07-17
    Description: We present Sunyaev-Zel'dovich Effect (SZE) imaging observations of three distant (z greater than 0.8) and highly X-ray luminous clusters of galaxies, C1J1226+33, C1J0152-13 and MS1054-03. Two of the clusters, C1J1226+33 and C1J0152-13, were recently discovered in the WARPS X-ray survey. Their high X-ray luminosity suggests they are massive systems and, if confirmed, would provide strong constraints on the cosmological parameters of structure formation models. Our Sunyaev-Zel'dovich Effect data provide confirmation that they are massive clusters similar to the well studied cluster MS1054-03. Assuming the clusters have the same gas mass fraction derived from SZE measurements of eighteen known massive clusters, we are able to infer their mass and electron temperatures from the SZE data. The derived electron temperatures are 10.0, 8.5, and 10.3 KeV, respectively, and we infer total masses of approximately 2 x 10(circumflex) 14 h(circumflex) -l M - sun within a radius of 65" for all three clusters. For C1J0152-13 and MS1054-03 we find good agreement between our SZE derived temperatures and those derived from X-ray spectroscopic measurements. No X-ray derived temperatures are available for C1J1226+33, and thus the SZE data provide the first confirmation that it is indeed a massive system. The demonstrated ability to determine cluster temperatures and masses from SZE observations without access to X-ray data illustrates the power of using deep SZE surveys to probe the distant universe.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-31
    Description: A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 gigahertz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 microK-arcminutes noise and 15 arcseconds resolution at 150 gigahertz), CMB-HD (Cosmic Microwave Background - Henry Draper catalog entry) will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k approximately equal to 10 h per megaparsec), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (less than 0.1 electronvolts), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. The combination of CMB-HD with contemporary ground and space-based experiments will also provide powerful synergies. CMB-HD will deliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey will be made publicly available, with usability and accessibility a priority.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel' dovich Effect (SZE) measurements. We use three models for the gas distribution: (1) an isothermal Beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data, (2) a nonisothermal double Beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal Beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core, and provides consistently good fits to clusters spanning a wide range of morphological properties. The agreement in the results shows that the core can be satisfactorily accounted for by either excluding the core in fits to the X-ray data (the 100 kpc-cut model) or modeling the intracluster gas with a non-isothermal double Beta-model. We find that the SZE is largely insensitive to structure in the core.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present 30 GHz interferometric Sunyaev-Zeldovich effect (SZE) measurements of a redshift-limited, X-ray-selected cluster sample from the Massive Cluster Survey (MACS). All eight of the high-redshift (z 〉 0.5, delta 〉 -15 deg) galaxy clusters were detected. Additional observations were made at 4.8 GHz with the Very Large Array to help constrain the amount of point source contamination to the SZE decrements. From SZE data alone, we derive electron temperatures in the range 5.5-18.5 keV and total masses between 1.5 and 2.6 x 10(exp 14)/h solar masses within a 65 minute radius (0.28/h Mpc at z = 0.5) for the eight clusters. Six of the clusters are MACS discoveries, while two (C10016+1609 and MS 0451.6-0305) were detected by previous X-ray observations and have been recently observed with the Chandra observatory. The X-ray-derived temperatures and masses for C10016+1609 and MS 0451.6-0305 are in good agreement with the SZE derived values. Strong detections of the SZE signal in this sample of MACS objects confirm that they are hot, massive clusters.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 583; 559-565
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal Beta-model with the central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass, and integrated Compton gamma-parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement. We compare our results with cosmological numerical simulations and find that simulations that include radiative cooling, star formation, and feedback match well both the slope and normalization of our SZE scaling relations.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 675; 106-114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments-such as the Sunyaev-Zel'dovich Array (SZA)- are capable of probing clusters over a large range in a physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high-quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.
    Keywords: Astronomy
    Type: M09-0071 , The Astrophysical Journal; 694; 1034-1044
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-23
    Description: A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 GHz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 Karcmin noise and 15 arcsecond resolution at 150 GHz), CMB-HD will enable major advances.It will allow 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k 10 hMpc1), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field,which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3.) ruling out or detecting any new, light (〈 0:1 eV), thermal particles, which could potentially be the dark matter, and 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5.) monitor the transient sky by mapping the full observing region every few days,which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6.) provide a census of planets, dwarf planets, andasteroids in the outer Solar System, and 7.) enable the detection of exo-Oort clouds around othersolar systems, shedding light on planet formation. The combination of CMB-HD with contemporaryground and space-based experiments will also provide powerful synergies. CMB-HD willdeliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-classoff-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopeswill field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey willbe made publicly available, with usability and accessibility a priority.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...