ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The effects of different fabrication procedures to increase the damage tolerance of sandwich panels were studied. Baseline panels consisted of a 25.4 mm premolded core, surfaced with 177 C cure film adhesive and carbon-bismaleimide prepreg which were subsequently cocured onto the core. It was found that panels with a prefabricated skin, which was subsequently bonded onto the core with room temperature cure adhesive, showed greatly increased damage tolerance.
    Keywords: STRUCTURAL MECHANICS
    Type: In: International SAMPE Symposium and Exhibition, 37th, Anaheim, CA, Mar. 9-12, 1992, Proceedings (A93-15726 04-23); p. 1228-1242.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A sandwich construction, composed of hybrid carbon-glass fiber-reinforced plastic skins and a syntactic foam core, was selected as the design concept for a wind tunnel compressor blade application, where high damage tolerance and durability are of major importance. Beam specimens were prepared from open-edge and encapsulated sandwich panels which had previously been immersed in water at different temperatures for periods of up to about two years in the extreme case. Moisture absorption and strength characteristics, as related to time of exposure to hygrothermal conditions, were evaluated for the sandwich specimens and their constituents (skins and foam). After different exposure periods, low-velocity impact damage was inflicted on most sandwich specimens and damage characteristics were related to impact energy. Eventually, the residual compressive strengths of the damaged (and undamaged) beams were determined flexurally. Test results show that exposure to hygrothermal conditions leads to significant strength reductions for foam specimens and open-edge sandwich panels, compared with reference specimens stored at room temperature. In the case of skin specimens and for beams prepared from encapsulated sanwich panels that had previously been exposed to hygrothermal conditions, moisture absorption was found to improve strength as related to the reference case. The beneficial effect of moisture on skin performance was, however, limited to moisture contents below 1% (at 50 C and lower temperatures). Above this moisture level and at higher temperatures, strength degradation of the skin seems to prevail.
    Keywords: COMPOSITE MATERIALS
    Type: Composites (ISSN 0010-4361); 26; 1; p. 47-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Composites Technology & Research (ISSN 0885-6804); 14; 3; p. 155-168.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.
    Keywords: COMPOSITE MATERIALS
    Type: Texas Univ., Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates; p 1149-1159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...