ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The development of optical techniques capable of measuring in-stream flow properties of air breathing hypersonic engines is a goal of the Aerospace Propulsion Division at AFRL. Of particular interest are techniques such as tunable diode laser absorption spectroscopy that can be implemented in both ground and flight test efforts. We recently executed a measurement campaign at the exit of the combustor of the HIFiRE 2 ground test engine during Phase II operation of the engine. Data was collected in anticipation of similar data sets to be collected during the flight experiment. The ground test optical data provides a means to evaluate signal processing algorithms particularly those associated with limited line of sight tomography. Equally important, this in-stream data was collected to compliment data acquired with surface-mounted instrumentation and the accompanying flowpath modeling efforts-both CFD and lower order modeling. Here we discuss the specifics of hardware and data collection along with a coarse-grained look at the acquired data and our approach to processing and analyzing it.
    Keywords: Optics
    Type: AIAA Paper-2012-857 , NF1676L-14071 , 20th AIAA/ASME/AHS Adaptive Structures Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States|14th AIAA Non-Deterministic Approaches Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States|53rd Structures, Structural Dynamics, and Materials Conference (SDM); Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States|13th AIAA Gossamer Systems Forum; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Paper 959575 , NF1676L-11250 , 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference; Apr 11, 2011 - Apr 14, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-24
    Description: High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.
    Keywords: Research and Support Facilities (Air)
    Type: NF1676L-12610 , 58th JANNAF Propulsion Meeting; Apr 18, 2011 - Apr 22, 2011; Arlington, VA; United States|32nd Airbreathing Propulsion Meeting; Apr 18, 2011 - Apr 22, 2011; Arlington, VA; United States|32nd Exhaust Plume and Signatures Meeting; Apr 18, 2011 - Apr 22, 2011; Arlington, VA; United States|44th Combustion Meeting; Apr 18, 2011 - Apr 22, 2011; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-12391 , 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference; Apr 11, 2011 - Apr 14, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A conformable compaction system employing three individual compactors has been designed for integration into fiber placement and tape laying deposition heads for out-of-autoclave fabrication of thermoplastic contoured parts. The compactors are intended to perform against two geometry specifications: (1) a general minimum radius of curvature limit of 180cm (71-in), and (2) a pad-up specification with a maximum height of 2.5mm (0.1-in) and a minimum ramp of 2.5mm (1-in). The mirrored specification is applicable to a pan-down. The three designs include a hot line compactor capable of a 1000N (400-lb) force at 450C over a 114mm (4.5-in) width, a hot area compactor capable of a 400N (100-lb) force at 450C over a 114mm width by 76mm length (4.5-in by 3-in), and a cold compactor that combines the features of a line and an area compactor. The cold compactor s line segments act with a 2800N (700-lb) force across a 127mm (5-in) width, while the cold compactor's area segments act with a 1000N (250-lb) force over a 127mm by 102mm (5-in by 4-in) area. Two of the designs, the hot line and hot area compactors, have been constructed, developed, and proven out in hot mode to compact actual thermoplastic composite plies over undulating geometry. IM-7PEEK [0/90/0/90]s pan-down and IM-7PEEK [0/-45/90/45]2s pad-up laminates have been fabricated and photomicrographs show good microstructure.
    Keywords: Structural Mechanics
    Type: Sampe International Symposium and Exhibition; May 12, 2003 - May 16, 2003; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.
    Keywords: Composite Materials
    Type: SAMPE Europe - 27th International Conference and Forums; Mar 27, 2006 - Mar 29, 2006; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A tape placement head for applying thermoplastic tape to an object includes a heated feeder which guides the tape/tow to a heated zone. The heated zone has a line compactor having a single row of at least one movable heated member. An area compactor is located in the heated zone downstream from the line compactor. The area compactor includes a plurality of rows of movable feet which are extendable toward the tape/tow different distances with respect to each other to conform to the shape of the object. A shim is located between the heated compactors and the tape/tow. A chilled compactor is in a chilled zone downstream from the heated zone. The chilled zone includes a line chilled compactor and an area chilled compactor. A chilled shim is mounted between the chilled compactor and the tape/tow.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Supersonic combustion performance of a bi-component gaseous hydrocarbon fuel mixture is one of the primary aspects under investigation in the HIFiRE Flight 2 experiment. In-flight instrumentation and post-test analyses will be two key elements used to determine the combustion performance. Pre-flight computational fluid dynamics (CFD) analyses provide valuable information that can be used to optimize the placement of a constrained set of wall pressure instrumentation in the experiment. The simulations also allow pre-flight assessments of performance sensitivities leading to estimates of overall uncertainty in the determination of combustion efficiency. Based on the pre-flight CFD results, 128 wall pressure sensors have been located throughout the isolator/combustor flowpath to minimize the error in determining the wall pressure force at Mach 8 flight conditions. Also, sensitivity analyses show that mass capture and combustor exit stream thrust are the two primary contributors to uncertainty in combustion efficiency.
    Keywords: Spacecraft Propulsion and Power
    Type: LF99-9901 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Aug 03, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...