ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2019-07-20
    Description: In the subalpine zone of the Rocky Mountains, climate change is predicted to result in an increase in the frequency and severity of spruce beetle outbreaks. Climate change itself may affect vegetation, potentially leading to changes in species composition. The direct and indirect effects of climate and disturbances on forest composition, biomass, and dynamics open the possibility for non-linear ecosystem responses. Modeling studies allow for the study of the interaction of these effects and their impact on the forest system. University of Virginia Forest Model Enhanced (UVAFME), an individual-based gap model that simulates forest dynamics and characteristics, is updated with a spruce beetle subroutine that calculates the probability for beetle infestation and potential mortalityof each tree on a plot. The updated model is then run with multiple scenarios that combine beetle infestation with current or altered climate at sites across the southern Rocky Mountains. Results show that spruce beetle infestations acted to facilitate competition with invading lower-elevation species, resulting in an increase in the biomass of historically lower elevation species and a further decline in Engelmann spruce biomass than occurred with solely bark beetle disturbance or solely climate change. We also found an initial enhancing effect between spruce beetle infestation and climate change; however, by the end of 100 yr of climate change and potential beetle infestation, climate had a dampening effect on spruce beetle infestation, through loss of host trees. These results are an important step in understanding the possible futures for vegetation of the Rocky Mountains as well as for spruce forests across the western United States and Canada.
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN63377 , Ecological Society of America; 9; 10; e02437
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has heightened local wildfire risk as canopy loss facilitates the conversion from bare to fire-prone grassland. We collected images from NASA satellite-based Earth observations to visualize land cover succession at roughly five-year intervals following a severe, mid-1990's beetle infestation to the present. We classified these data by vegetation cover type to quantify grassland encroachment patterns over time. Raster band math provided a change detection analysis on the land cover classifications. Results indicate the highest wildfire risk is linked to herbaceous and black spruce land cover types, The resulting land cover change image will give the Kenai National Wildlife Refuge (KENWR) ecologists a better understanding of where forests have converted to grassland since the 1990s. These classifications provided a foundation for us to integrate digital elevation models (DEMs), temperature, and historical fire data into a model using Python for assessing and mapping changes in wildfire risk. Spatial representations of this risk will contribute to a better understanding of ecological trajectories of beetle-affected landscapes, thereby informing management decisions at KENWR.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65028 , Remote Sensing (e-ISSN 2072-4292); 11; 3; 283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...