ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
Collection
Language
  • 1
    facet.materialart.
    Unknown
    Mineralogical Society of America
    In:  American Mineralogist, 99 (11-12). pp. 2389-2397.
    Publication Date: 2018-10-08
    Description: We report the replacement of chalcopyrite by bornite under hydrothermal conditions in solutions containing Cu(I) and hydrosulfide over the temperature range 200–320 °C at autogenous pressures. Chalcopyrite was replaced by bornite under all studied conditions. The reaction proceeds via an interface coupled dissolution-reprecipitation (ICDR) mechanism and via additional overgrowth of bornite from the bulk solution. Initially, the reaction is fast and results in a bornite rim of homogeneous thickness. Reaction rates then slow down, probably reflecting healing of the porosity, and the reaction proceeds predominantly along twin boundaries of the chalcopyrite. The composition of the bornite product is generally Cu-rich, corresponding to the bornite-digenite (Cu5FeS4-Cu9S5; Bn-Dg) solid solution (bdss). The Cu and Fe contents were controlled principally by temperature, with solution pH having only a small effect. The percentage of Cu in bdss decreased and the percentage of Fe increased with increasing reaction temperature: at 200 °C a composition of Bn47Dg53 was obtained; at 300 °C the composition was Bn90Dg10 and at 320 °C it was near-stoichiometric bornite. The influence of temperature rather than solution chemistry on the composition of bdss, as well as the homogeneity of the bornite product grown both via replacement of chalcopyrite and from the bulk solution as overgrowth, are interpreted to reflect buffering of the bornite activity in bdss via solids (e.g., reaction chalcopyrite + 2 chalcocite = bornite). Only the end-member compositions of the bdss are found in nature, indicating that the products obtained are metastable, and illustrating the importance of reaction mechanism for controlling the chemistry of the mineral product. The unique features of the chalcopyrite to bornite reaction investigated here are related to interaction between a solution controlled ICDR reaction with solid-state diffusion processes driving porosity healing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-21
    Description: There is increasing evidence linking the mass-extinction event at the Cretaceous-Paleogene boundary to an asteroid impact near Chicxulub, Mexico. Here we use model simulations to explore the combined effect of sulfate aerosols, carbon dioxide and dust from the impact on the oceans and the marine biosphere in the immediate aftermath of the impact. We find a strong temperature decrease, a brief algal bloom caused by nutrients from both the deep ocean and the projectile, and moderate surface ocean acidification. Comparing the modeled longer-term post-impact warming and changes in carbon isotopes with empirical evidence points to a substantial release of carbon from the terrestrial biosphere. Overall, our results shed light on the decades to centuries after the Chicxulub impact which are difficult to resolve with proxy data.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: The simulations of the end‐Cretaceous climate and the effects of the impact are carried out with a coupled climate model consisting of a modified version of the ocean general circulation model MOM3, a dynamic/thermodynamic sea ice model, and a fast statistical‐dynamical atmosphere model. Our impact simulations are based on a climate simulation of the end‐Cretaceous climate state using a Maastrichtian (70 Ma) continental configuration. The solar constant is scaled to 1354 W/m2, based on the present‐day solar constant of 1361 W/m2 and a standard solar model. A baseline simulation with 500 ppm of atmospheric CO2 and a sensitivity experiment at 1000 ppm CO2 concentration. The impact is assumed to release 100 Gt sulfur and 1400 Gt CO2. We simulate stratospheric residence times of 2.1 y, 4.3 y and 10.6 y. More information about the model can be found in the manuscript (https://doi.org/10.1002/2016GL072241).
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: In "A pronounced spike in ocean productivity triggered by the Chicxulub impact" we study the combined effect of sulfate aerosols, carbon dioxide and dust on the oceans and the marine biosphere after the Chicxulub impact using simulations with a climate model including ocean biogeochemistry. The data presented here is the model output the results of this manuscript are based on. Additionally, the figures of the publication and scripts (Python) to analyse the model output and generate the figures are contained. The model output is provided in different netcdf files. The structure of the model output is explained in a readme file. The data is generated using the coupled ocean-atmosphere model CLIMBER-3α+C which models climate globally on a 3.75° x 3.75° (ocean) and 22.5° (longitude) x 7.5° (latitude) (atmosphere) grid. More information about the model can be found in the manuscript and the README of this data publication.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-21
    Description: During the Devonian (419 to 359 million years ago), life on Earth witnessed decisive evolutionary breakthroughs, most prominently the colonization of land by vascular plants and vertebrates. However, it was also a period of major marine extinctions coinciding with marked changes in climate. The cause of these changes remains unknown, and it is therefore instructive to explore systematically how the Devonian climate responds to changes in boundary conditions. Here we use coupled climate model simulations to investigate separately the influence of changes in continental configuration, vegetation cover, carbon dioxide (CO2) concentrations, the solar constant, and orbital parameters on the Devonian climate. The biogeophysical effect of changes in vegetation cover is small, and the cooling due to continental drift is offset by the increasing solar constant. Variations of orbital parameters affect the Devonian climate, with the warmest climate states at high obliquity and high eccentricity. The prevailing mode of decadal to centennial climate variability relates to temperature fluctuations in high northern latitudes which are mediated by coupled oscillations involving sea ice cover, ocean convection, and a regional overturning circulation. The temperature evolution during the Devonian is dominated by the strong decrease in atmospheric CO2. Albedo changes due to increasing vegetation cover cannot explain the temperature rise found in Late Devonian proxy data. Finally, simulated temperatures are significantly lower than estimates based on oxygen isotope ratios, suggesting a lower δ 18O ratio of Devonian seawater.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: Sixty‐six million years ago, the end‐Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the effect of dust or used one‐dimensional, noncoupled atmosphere models. Here we explore the longer‐lasting cooling due to sulfate aerosols using a coupled climate model. Depending on aerosol stratospheric residence time, global annual mean surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. The surface cooling triggered vigorous ocean mixing which could have resulted in a plankton bloom due to upwelling of nutrients. These dramatic environmental changes suggest a pivotal role of the impact in the end‐Cretaceous extinction.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-26
    Description: During the Devonian period (419 to 359 million years ago), life on Earth witnessed decisive evolutionary break-throughs, most prominently the colonisation of land by vascular plants and vertebrates. At the same time, it is also a period of major marine extinction events coinciding with marked changes in climate. There is limited knowledge about the causes of these changes and their interactions. It is therefore instructive to explore systematically how the Devonian climate system responds to changes in critical boundary conditions. Here we use coupled climate-model simulations to investigate separately the influence of changes in orbital parameters, continental configuration and vegetation cover on the Devonian climate. Variations of Earth's orbital parameters affect the Devonian climate system, with the warmest climate states at high obliquity and high eccentricity, but the amplitude of global temperature differences is smaller than suggested by an earlier study based on an uncoupled atmosphere model. The prevailing mode of climate variability on decadal to centennial timescales relates to surface air temperature fluctuations in high northern latitudes which are mediated by coupled oscillations involving sea-ice cover, ocean convection and a regional overturning circulation in the Arctic. Furthermore, we find only a small biogeophysical effect of changes in vegetation cover on global climate during the Devonian, and the impact of changes in continental configuration is small as well. Assuming decreasing atmospheric carbon dioxide concentrations throughout the Devonian, we then set up model runs representing the Early, Middle and Late Devonian. Comparing the simulations for these timeslices, the temperature evolution is dominated by the strong decrease in atmospheric carbon dioxide. In particular, the albedo change due to the in- crease in land vegetation alone cannot explain the temperature rise found in Late Devonian proxy data which remains difficult to reconcile with reconstructed falling carbon-dioxide levels. Simulated temperatures are significantly lower than estimates based on oxygen-isotope ratios, suggesting a lower δ18O ratio of Devonian seawater.
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-27
    Description: The extinction of the dinosaurs and around three-quarters of all living species was almost certainly caused by a large asteroid impact 66 million years ago. Seismic data acquired across the impact site in Mexico have provided spectacular images of the approximately 200-kilometre-wide Chicxulub impact structure. In this Review, we show how studying the impact site at Chicxulub has advanced our understanding of formation of large craters and the environmental and palaeontological consequences of this impact. The Chicxulub crater’s asymmetric shape and size suggest an oblique impact and an impact energy of about 1023 joules, information that is important for quantifying the climatic effects of the impact. Several thousand gigatonnes of asteroidal and target material were ejected at velocities exceeding 5 kilometres per second, forming a fast-moving cloud that transported dust, soot and sulfate aerosols around the Earth within hours. These impact ejecta and soot from global wildfires blocked sunlight and caused global cooling, thus explaining the severity and abruptness of the mass extinction. However, it remains uncertain whether this impact winter lasted for many months or for more than a decade. Further combined palaeontological and proxy studies of expanded Cretaceous– Palaeogene transitions should further constrain the climatic response and the precise cause and selectivity of the extinction.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-27
    Description: The emergence of forests on Earth (~385 million years ago, Ma)1 has been linked to an order-of-magnitude decline in atmospheric CO2 levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO2 before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate a mechanistic model for gas exchange in modern lycophytes and constrain atmospheric CO2 levels 410–380 Ma from related fossilized plants with bound uncertainties of approximately ±100 ppm (1 sd). We find that the atmosphere contained ~525–715 ppm CO2 before continents were afforested, and that Earth was partially glaciated according to a palaeoclimate model. A process-driven biogeochemical model (COPSE) shows the appearance of trees with deep roots did not dramatically enhance atmospheric CO2 removal. Rather, shallow-rooted vascular ecosystems could have simultaneously caused abrupt atmospheric oxygenation and climatic cooling long before the rise of forests, although earlier CO2 levels are still unknown.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...