ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: We report calculations of the vibrational frequencies of CO dimer on Cu(100) using recently developed vibrational self-consistent field code. Eighteen modes are treated explicitly within three modes coupling representation. Nine symmetry distinct doublets are observed and the corresponding frequencies are computed. The thermally broadened spectrum of the CO-stretch fundamental is calculated at various temperatures. Both the temperature and coverage dependence of both the average CO-stretch frequency and the corresponding line-width are consistent with experimentally observed trends. The document contains no classified information International clearance is needed.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The quartic force fields of HCN and HNC are determined using atomic natural orbital one-particle basis sets of spdf/spd and spdfg/spdf quality in conjunction with the CCSD(T) electron correlation method (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations). The HCN force field is in good agreement with a recent experimentally derived force field and also with the force field recently computed by Wong and Bacskay. On the basis of the good agreement obtained for HCN, it is argued that the ab initio quartic force field for HNC is superior to a prior force field derived from experiment. The harmonic frequencies of HNC are predicted to be 3822 +/- 10,472 +/- 5, and 2051 +/-10/cm for omega1, omega2, and omega3, respectively; the experimentally derived values are above these values and fall outside the estimated uncertainties. Using the quartic force field, spectroscopic constants are predicted for HNC based on a vibrational second-order perturbation theory analysis. It is also asserted that the gas-phase fundamental v(sub 3) for HNC is slightly lower than the matrix isolation value. The range of validity of the quartic force fields is investigated by comparison of variational vibrational energies computed with the quartic force fields to those obtained from our recently reported global HCN/HNC potential energy surface and also to experimental data.
    Keywords: Atomic and Molecular Physics
    Type: NASA-CR-204271 , NAS 1.26:204271 , The Journal of Physical Chemistry (ISSN 0022-3654); 97; 35; 8937-8943
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: A semi-global potential energy surface (PES) and quartic force field (QFF) based on fitting high-level electronic structure energies are presented to describe the structures and spectroscopic properties of NNHNN+. The equilibrium structure of NNHNN+ is linear with the proton equidistant between the two nitrogen groups and thus of D(sub h) symmetry. Vibrational second-order perturbation theory (VPT2) calculations based on the QFF fails to describe the proton rattle motion, i.e., the antisymmetric proton stretch, due to the very flat nature of PES around the global minimum, but performs properly for other modes with sharper potential wells. Vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) calculations using a version of MULTIMODE without angular momentum terms successfully describe this motion and predict the fundamental to be at 759 cm(exp -1). This is in good agreement with the value of 746 cm(exp -1) from a fixed-node diffusion Monte Carlo calculation and the experimental Ar-tagged result of 743 cm(exp -1). Other VSCF/VCI energies are in good agreement with other experimentally reported ones. Both double-harmonic intensity and rigorous MULTIMODE intensity calculations show the proton transfer fundamental has a very strong intensity.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: ARC-E-DAA-TN28166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp 1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN12497
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The quartic force fields of HCN and HNC are determined using atomic natural orbital one-particle basis sets of spdf/spd and spdfg/spdf quality in conjunction with the CCSD(T) electron correlation method (singles and doubles coupled-cluster theory plus a perturbation estimate of the effects of connected triple excitations). The HCN force field is in good agreement with a recent experimentally derived force field and also with the force field recently computed by Wong and Bacskay. On the basis of the good agreement obtained for HCN, it is argued that the ab initio quartic force field for HNC is superior to a prior force field derived from experiment. The harmonic frequencies of HNC are predicted to be 3822 +/- 10, 472 +/- 5, and 2051 +/- 10 cm(exp -1) for omega(sub 1), omega(sub 2), and omega(sub 3), respectively; the experimentally derived values are above these values and fall outside the estimated uncertainties. Using the quartic force field, spectroscopic constants are predicted for HNC based on a vibrational second-order perturbation theory analysis. It is also asserted that the gas-phase fundamental nu(sub 3) for HNC is slightly lower than the matrix isolation value. The range of validity of the quartic force fields is investigated by comparison of variational vibrational energies computed with the quartic force fields to those obtained from our recently reported global HCN/HNC potential energy surface and also to experimental data.
    Keywords: Inorganic and Physical Chemistry
    Type: NASA-CR-203710 , NAS 1.26:203710 , The Journal of Physical Chemistry (ISSN 0022-3654); 97; 35; 8937-8943
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: Chemical Physics Letters (ISSN 0009-2614); 198; 6; p. 563-569.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: Journal of Chemical Physics (ISSN 0021-9606); 99; 1; p. 308-323.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...