ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
Collection
Years
  • 1
    Publication Date: 2016-07-08
    Description: The cause of the climatically controlled fluctuations in the carbonate content of deep-sea sediments remains the subject of uncertainty and debate. Three variables are involved: supply of biogenic carbonate, loss by dissolution, and dilution by non-carbonate phases. It is suggested that 230Th, which is produced in the ocean at a constant rate provides a reliable reference for measuring variations in rate of sedimentation on a regional scale. Results of a preliminary analysis based on published data indicate that, for depths at and above the lysocline, the carbonate fluctuations observed in cores from the North Atlantic Ocean are due primarily to variations in the terrigenous clay input, which was 2–5 times higher during glacials than during interglacials. Carbonate deposition appears to have been somewhat reduced during glacials, but probably not by more than a factor of 2. From published 230Th232Th profiles it appears that the South Atlantic Ocean also received increased inputs of terrigenous clay during glacial periods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 95 (C9). pp. 16195-16206.
    Publication Date: 2016-07-12
    Description: Generalized models of thorium and particle cycling, data from Station P, and an inversion technique are used to obtain rate estimates of important biological and chemical transformations occurring in the water column. We first verify the inversion technique using an idealized data set generated by a finite difference model, and then apply the inversion technique to data from Station P. With the Station P data, predicted rate constants for adsorption and release of thorium between the dissolved and small particle phases are consistent with the results from other workers. The predicted rate constants for the interaction between small and large particles are smaller than previous estimates. The predicted concentration of large rapidly sinking particles is greater than the concentration of suspended non-sinking particles, whereas the reverse is usually assumed to be the case. The calculated sinking rate for the large particles is 20 m d−1. This sinking rate is an order of magnitude smaller than the large particle sinking rate inferred from sediment trap mass fluxes at two levels in the water column. The reason we predict a high large particle concentration and slow settling velocity has not been uniquely determined. Possible modifications of the current model that could help to reconcile the differences between observations and model predictions include: 1) two classes of rapidly sinking particles or rate constants that change with depth, 2) direct interactions between the large particle and dissolved phases, and 3) incorporation of a continuous distribution of particle size and settling velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 87 (C3). pp. 2045-2056.
    Publication Date: 2016-07-12
    Description: The distribution of 234Th, 230Th, and 228Th between dissolved and particulate forms was determined in 17 seawater samples from the Guatemala and Panama basins. Sampling was carried out in situ with battery-powered, submersible pumping systems in which the seawater first passed through a Nuclepore filter (1.0-μm pore size) and then through a cartridge packed with Nitex netting that was impregnated with MnO2 to scavenge the dissolved Th isotopes. Natural 234Th was used as the tracer for monitoring the efficiency of scavenging. For all three isotopes, most of the activity was found in the dissolved form. On the average 4% of the 234Th, 15% of the 228Th, and 17% of the 230Th occurred in the particulate form, though the percentages were found to be strongly dependent on particle concentration. These distributions are not consistent with chemical scavenging models that assume irreversible uptake of Th on particle surfaces. The results can be explained, however, if continuous exchange of Th isotopes between seawater and the particle surfaces is assumed. Vertical profiles of both particulate and dissolved 230Th show increasing concentrations with depth, as required by the assumption of reversible exchange. Some of the dissolved 230Th profiles, however, show a reversal of this trend near the bottom, indicating accelerated scavenging near the water/sediment interface. Kinetics of both adsorption and desorption can be examined if at least two Th isotopes are measured in the same samples. Results show that reaction times are short (a few months) compared to the residence time of suspended matter in the deep ocean (several years), indicating that particles suspended in the deep sea are close to equilibrium with respect to exchange of metals at their surfaces.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-08
    Description: Variations in carbonate flux and dissolution, which occurred in the equatorial Atlantic during the last 24,000 years, have been estimated by a new approach that allows the point-by-point determination of paleofluxes to the seafloor. An unprecedented time resolution can thus be obtained which allows sequencing of the relatively rapid events occurring during deglaciation. The method is based on observations that the flux of unsupported 230Th into deep-sea sediments is nearly independent of the total mass flux and is close to the production rate. Thus excess 230Th activity in sediments can be used as a reference against which fluxes of other sedimentary components can be estimated. The study was conducted at two sites (Ceará Rise; western equatorial Atlantic, and Sierra Leone Rise; eastern equatorial Atlantic) in cores raised from three different depths at each site. From measurements of 230Th and CaCO3, changes in carbonate flux with time and depth were obtained. A rapid increase in carbonate production, starting at the onset of deglaciation, was found in both areas. This event may have important implications for the postglacial increase in atmospheric CO2 by increasing the global carbonate carbon to organic carbon rain ratio and decreasing the alkalinity of surface waters (and possibly the North Atlantic Deep Water). Increased carbonate dissolution occurred in the two regions during deglaciation, followed by a minimum during mid-Holocene and renewed intensification of dissolution in late Holocene. During the last 16,000 years, carbonate dissolution was consistently more pronounced in the western than in the eastern basin, reflecting the influence of Antarctic Bottom Water in the west. This trend was reversed during stage 2, possibly due to the accumulation of metabolic CO2 below the level of the Romanche Fracture Zone in the eastern basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-22
    Description: High‐resolution records of opal, carbonate, and terrigenous fluxes have been obtained from a high‐sedimentation rate core (MD84‐527: 43°50′S; 51°19;′E; 3269 m) by normalization to 230Th. This method estimates paleofluxes to the seafloor on a point‐by‐point basis and distinguishes changes in sediment accumulation due to variations in vertical rain rates from those due to changes in syndepositional sediment redistribution by bottom currents. We also measured sediment δ15N to evaluate the changes in nitrate utilization in the overlying surface waters associated with paleoflux variations. Our results show that opal accumulation rates on the seafloor during the Holocene and stage 3, based on 14C dating, were respectively tenfold and fivefold higher than the vertical rain rates, At this particular location, changes in opal accumulation on the seafloor appear to be mainly controlled by sediment redistribution by bottom currents rather than variations in opal fluxes from the overlying water column. Correction for syndepositional sediment redistribution and the improved time resolution that can be achieved by normalization to 230Th disclose important variations in opal rain rates. We found relatively high but variable opal paleoflux during stage 3, with two maxima centered at 36 and 30 kyr B.P., low opal paleoflux during stage 2 and deglaciation and a pronounced maximum during the early Holocene, We interpret this record as reflecting variations in opal production rates associated with climate‐induced latitudinal migration of the southern ocean frontal system. Sediments deposited during periods of high opal paleoflux also have high authigenic U concentrations, suggesting more reducing conditions in the sediment, and high Pa‐231/Th‐230 ratios, suggesting increased scavenging from the water column. Sediment δ15N is circa 1.5 per mil higher during isotopic stage 2 and deglaciation. The low opal rain rates recorded during that period appear to have been associated with increased nitrate depletion. This suggests that opal paleofluxes do not simply reflect latitudinal migration of the frontal system but also changes in the structure of the upper water column. Increased stratification during isotopic stage 2 and deglaciation could have been produced by a meltwater lid, leading to lower nitrate supply rates to surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-22
    Description: Variations in carbonate flux and dissolution, which occurred in the equatorial Atlantic during the last 24,000 years, have been estimated by a new approach that allows the point‐by‐point determination of paleofluxes to the seafloor. An unprecedented time resolution can thus be obtained which allows sequencing of the relatively rapid events occurring during deglaciation. The method is based on observations that the flux of unsupported 230Th into deep‐sea sediments is nearly independent of the total mass flux and is close to the production rate. Thus excess 230Th activity in sediments can be used as a reference against which fluxes of other sedimentary components can be estimated. The study was conducted at two sites (Ceará Rise; western equatorial Atlantic, and Sierra Leone Rise; eastern equatorial Atlantic) in cores raised from three different depths at each site. From measurements of 230Th and CaCO3, changes in carbonate flux with time and depth were obtained. A rapid increase in carbonate production, starting at the onset of deglaciation, was found in both areas. This event may have important implications for the postglacial increase in atmospheric CO2 by increasing the global carbonate carbon to organic carbon rain ratio and decreasing the alkalinity of surface waters (and possibly the North Atlantic Deep Water). Increased carbonate dissolution occurred in the two regions during deglaciation, followed by a minimum during mid‐Holocene and renewed intensification of dissolution in late Holocene. During the last 16,000 years, carbonate dissolution was consistently more pronounced in the western than in the eastern basin, reflecting the influence of Antarctic Bottom Water in the west. This trend was reversed during stage 2, possibly due to the accumulation of metabolic CO2 below the level of the Romanche Fracture Zone in the eastern basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...