ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4978
    Keywords: chromatin structure ; differentiation ; nuclear matrix ; osteoblast ; transcription ; vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1–3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 54 (1994), S. 494-500 
    ISSN: 0730-2312
    Keywords: vitamin D ; nuclear matrix ; protein ; AP-1 ; NMP2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The subnuclear distribution of the vitamin D receptor was investigated to begin addressing the contribution of nuclear architecture to vitamin D-responsive control of gene expression in ROS 17/2.8 rat osteosarcoma cells. The nuclear matrix is an anastomosing network of filaments that is functionally associated with DNA replication, transcription, and RNA processing. The representation of vitamin D receptor in the nuclear matrix and nonmatrix nuclear fractions was determined by the combined application of (1) sequence-specific interactions with the vitamin D receptor binding element of the rat bone-specific osteocalcin gene promoter and (2) Western blot analysis. Both methods confirmed the presence of vitamin D receptor in the nonmatrix nuclear fraction and the absence of detectable vitamin D receptors associated with the nuclear matrix. In contrast, these same nuclear matrix proteins preparations exhibited association with the general transcription factor AP-1 and a bone tissue-specific promoter binding factor NMP2. NMP-2 exhibits recognition for a promoter domain contiguous to the vitamin D-responsive element of the osteocalcin gene, although the vitamin D receptor does not appear to be a component of the nuclear matrix proteins. Interrelationships between nuclear matrix proteins and nonmatrix nuclear proteins, in mediating steroid hormone responsiveness of a vitamin D-regulated promoter, are therefore suggested.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...