ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-11
    Description: Abstract
    Description: The data set comprises new thermochronologic data along the TRANSALP geophysical transect in the Eastern Alps, i.e. (i) apatite and (ii) zircon (U-Th)/He measurements (Tables S1, S2 and S3), and (iii) HeFTy inverse thermal time-temperature-path models ('HeFTy_Models.zip') including a table of parameters used (Table S4). Individual model files can be opened using the HeFTy software (Ketcham et al., 2007).
    Description: Methods
    Description: Sampling method Bedrock samples were taken along the TRANSALP geophysical transect (e.g., Lüschen et al., 2004; 2006) with the main purpose of relating new (and existing) thermochronological data to previously identified mantle geometries and to gain orogen-scale insights into the evolution of the eastern European Alps since initialization of collision in the Eocene/Oligocene. Apatite and zircon (U-Th)/He analyses were the method of choice for two reasons: (i) these systems are considered most suitable to detect periods and locations of increased exhumation that are related to the Neogene evolution of the European Alps including changes in mantle geometries, and (ii) these systems systematically complement existing thermochronology data along the transect, which are predominantly comprised of fission-track data. Detailed analytical procedure is described in the dateset description file ("2020-48_Eizenhöfer-et-al_Data Description.pdf").
    Keywords: European Alps ; Thermochronology ; TRANSALP ; 4DMB ; Mountain Building Processes in 4D ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; tectonics ; thermochronology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-11
    Description: Abstract
    Description: The new data set along the TRANSALP geophysical transect in the European Alps consists of three types: (i) new apatite and zircon fission data, (ii) a MOVE™ structural-kinematic model for the tectonic evolution along the transect since the Oligocene, and (iii) PECUBE input/output thermo-kinematic model data corresponding to the structural-kinematic MOVE™ model. The fission track data are provided as *.csv data tables formatted to be ideally opened and viewed in RadialPlotter (Vermeesch, 2009) or alternatively in any spreadsheet editor (e.g., Microsoft Excel). The MOVE™ files require the software MOVE™ licensed by Petroleum Experts. The PECUBE input/output files can be opened with any text editor (e.g., Microsoft Visual Code) or data analysis software (e.g., MATLAB™).
    Description: Methods
    Description: Apatite and zircon mineral extraction were conducted for four samples following standard techniques. Samples were crushed and sieved before undergoing magnetic and heavy liquid separation. Apatite and zircon separates were embedded in epoxy resin and Teflon™ sheets, respectively. The sample mounts were polished to expose internal surfaces at approximately half the grain size. Apatite mounts were etched in 5.5 mol HNO3 for 20 seconds at 21 ºC (Donelick et al., 2005), and zircon mounts in a KOH:NaOH eutectic melt at 228 ºC until fission tracks were visible (Garver, 2003). We employed the mica external detector method (Gleadow et al., 1981) for all samples to determine the Uranium content. After neutron irradiation at the nuclear reactor BR1 in Mol/Belgium, micas were etched in 40% HF for 30 minutes at 21 ºC. Spontaneous and induced fission tracks were counted at 1000x magnification on a Zeiss Axiolmager M2m microscope with AutoScan® soft- and hardware. Fission-track ages are calculated using the ζ age calibration method (Hurford & Greene, 1983) using ζ-values of 249.9±8.9 and 121.7±4.1 for the AFT and ZFT systems, respectively. Data visualization and age mixture distribution analyses were aided by RadialPlotter (Vermeesch, 2009). Reconstruction of rock trajectories along TRANSALP were performed in MOVE™ through orogen-scale upper lithospheric cross-section balancing in 2D (e.g., Dahlstrom, 1969). Cross-section balancing provides a tool to reconstruct the displacement of rock material over geologic time scales while maintaining equal rock area before and after deformation under a brittle regime and honoring observed geology. Maintenance of line lengths before and after a deformation step is ensured above active décollements, whereas beneath, we assume crustal thickening occurs through unspecified ‘distributed deformation’ reflecting a hybrid ductile/brittle state. This enabled us to implement a simplified evolution of the Mohorovičić discontinuity (Moho) with time. Shortening above the décollement gives us a precise estimate of the area that needs to be accommodated between the décollement and the Moho. In this process, the Moho has been warped downward by the amount of space displaced between the décollement and the Moho with each deformation step (Fig. 4), assuming that crustal thickening is achieved through distributed deformation’ until the Moho reaches its present-day shape as determined by Kummerow et al. (2004). In this forward kinematic modeling process, we added flexural and isostatic crustal responses to rock displacement and different modes of erosion (i.e., changing the angle of taper topography). For details related to implementation of the geological structures and crustal parameters, please refer to the companion paper. Viable structural-kinematic models are used to track rock displacement and simulate heat advection in a thermal model. The thermal model used is a University of Tübingen modified version of PECUBE (‘Pecube-D’; Whipp et al., 2009; Braun, 2003; McQuarrie & Ehlers, 2015; 2017). Pecube-D is modified from the original version of Pecube to include integration with the Move structural restoration software (McQuarrie and Ehlers, 2015), detrital thermochronometer age analysis (Whipp et al., 2009; Whipp and Ehlers, 2020), and inverse modelling of cooling ages for sample exhumation rates (Thiede and Ehlers, 2013). It solves the three-dimensional heat transport equation for user-defined topographies and surface boundary conditions. Age prediction algorithms for the (U-Th)/He and fission-track systems in apatite and zircon follow Farley (2000), Crowley et al. (1991), Reiners et al. (2004), and Brandon et al. (1998).
    Keywords: TRANSALP ; thermochronology ; continental collision ; subduction polarity ; thermo-kinematic modelling ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; geology ; surface processes ; tectonics ; thermochronology
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...