ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 32 (1996), S. 93-113 
    ISSN: 1573-515X
    Keywords: alpine ; biogeochemistry ; nitrogen ; nitrogen saturation ; snowmelt ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Experiments were conducted during 1993 at Niwot Ridge in the Colorado Front Range to determine if the insulating effect of winter snow cover allows soil microbial activity to significantly affect nitrogen inputs and outputs in alpine systems. Soil surface temperatures under seasonal snowpacks warmed from −14 °C in January to 0 °C by May 4th. Snowmelt began in mid-May and the sites were snow free by mid June. Heterotrophic microbial activity in snow-covered soils, measured as C02 production, was first identified on March 4, 1993. Net C02 flux increased from 55 mg CO2-C m−2 day−1 in early March to greater than 824 mg CO2-C m-2 day−1 by the middle of May. Carbon dioxide production decreased in late May as soils became saturated during snowmelt. Soil inorganic N concentrations increased before snowmelt, peaking between 101 and 276 mg kg−1 soil in May, and then decreasing as soils became saturated with melt water. Net N mineralization for the period of March 3 to May 4 ranged from 2.23 to 6.63 g N m−2, and were approximately two orders of magnitude greater than snowmelt inputs of 50.4 mg N m−2 for NH4 + and 97.2 mg N m−2 for NO3 −. Both NO3 − and NH4 + concentrations remained at or below detection limits in surface water during snowmelt, indicating the only export of inorganic N from the system was through gaseous losses. Nitrous oxide production under snow was first observed in early April. Production increased as soils warned, peaking at 75 μg N2O-N m−2 day−1 in soils saturated with melt water one week before the sites were snow free. These data suggest that microbial activity in snow-covered soils may play a key role in alpine N cycling before plants become active.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...