ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: insulin action ; protein-tyrosine phosphatases ; insulin resistance ; protein phosphorylation ; insulin receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The intrinsic tyrosyl kinase activity of the insulin receptor is regulated by a balance between insulin-induced receptor autophosphorylation, which stimulates the receptor kinase, and enzymatic dephosphorylation of the receptor, which deactivates its kinase activity. The cellular protein-tyrosine phosphatase (PTPase) enzymes responsible for reversing the activated state of the insulin receptor have not been characterized. Our laboratory is interested in identifying and cloning the specific PTPase(s) that regulate the phosphorylation state of the insulin receptor. This chapter will summarize the design and results of our initial molecular cloning studies to identify specific PTPases in insulin-sensitive tissues that may have a potential physiological role in insulin action and clinical insulin resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 39 (1989), S. 429-441 
    ISSN: 0730-2312
    Keywords: transmembrane signal ; protein phosphorylation ; tyrosine kinase ; signal transmission ; phosphorylation cascade ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Insulin stimulated autophosphorylation of the β-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the β-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (α-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that α-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of α-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the β-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the β-subunit was mainly (〉80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the β-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...