ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Natural resources research 9 (2000), S. 157-166 
    ISSN: 1573-8981
    Keywords: Sedimentary aquifers ; geochemical reactions ; diagenesis ; porosity—permeability relationship
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A new model for simulating porosity and permeability changes caused by sedimentary reservoirsdiagenesis is presented. Permeability is computed from changes in the mineral volume fractionsresulting from precipitation and dissolution of the rock-forming mineral as fluid flows throughvariable salinity and temperature fields. Its evolution is controlled by a power—law relationship,in which a weighting coefficient is assigned to clay minerals. This approach allows theincorporation of the widely observed influence of clay content on the porosity—permeabilityrelationship. A synthetic example is set up to analyze the sensitivity of the results to a set offour controlling parameters: the effect of the clay-weighting coefficient compared to the effectof the salinity gradient, temperature gradient, and exponent coefficient of the permeabilityevolution law. Using a large range of values for these parameters, the results show that theirinfluence is of equivalent magnitude in terms of permeability evolution rate. It also seemsthat the value of the clay-weighting coefficient affects the evolution trend: permeability mayincrease when the porosity decreases (and vice versa). The model is compared to the classicalapproach for which permeability is a function of porosity change only. Results display thestrong influence of even low values of the clay-weighting coefficient on the permeabilitychange. Consequently, the specific influence of mineral transfers on pore structure changes isa key parameter for modeling permeability changes and cannot be bypassed by the use ofsimple porosity—permeability evolution law.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...