ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phospholipase A2  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 11 (1984), S. 17-24 
    ISSN: 1432-1017
    Keywords: Band 3 ; melittin ; phospholipase A2 ; erythrocyte ; transient dichroism ; rotational diffusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The rotational mobility of band 3, a protein constituent of the human erythrocyte membrane, was measured by observing the flash-induced transient dichroism of the triplet probe eosin maleimide. In the presence of melittin, a pharmacologically active polypeptide from honey bee (Apis mellifera) venom, a dose-dependent loss of rotational mobility was detected. With acetylated melittin, the ability to immobilise is reduced. Succinylated melittin, however, is devoid of immobilising activity. The possible relevance of these findings to the normal mode of action of melittin was examined by comparing the relative abilities of the native, acetylated and succinylated melittins to lyse erythrocytes and synergise with phospholipase A2, another constituent of bee venom. For both these properties, the order of effectiveness is native melittin 〉 acetyl melittin 〉 succinyl melittin = 0, the same as their order of effectiveness in immobilising band 3. A mechanism is proposed in which melittin is anchored in the membrane by its hydrophobic N-terminus, while its cationic C-terminal moiety binds to negatively charged residues on membrane proteins. This leads either directly or indirectly to protein aggregation and hence loss of mobility. From a detailed comparison of the different effects of the melittin derivatives, it is concluded that melittin may function in vivo by aggregating membrane proteins in order to allow phospholipase A2 to gain access to the membrane bilayer and commence catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...