ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • permeation enhancer  (1)
  • skin permeation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 11 (1994), S. 1657-1662 
    ISSN: 1573-904X
    Keywords: transdermal drug delivery ; electroporation ; metoprolol ; skin permeation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Electroporation, i.e., the creation of transient “pores” in lipid membranes leading to increased permeability, could be used to promote transdermal drug delivery. We have evaluated metoprolol permeation through full thickness hairless rat skin in vitro following electroporation with an exponentially decaying pulse. Application of electric pulses increased metoprolol permeation as compared to diffusion through untreated skin. Raising the number of twin pulses (300 V, 3 ms; followed after 1 s by 100 V, 620 ms) from 1 to 20 increased drug transport. Single pulse (100 V, 620 ms) was as effective as twin pulse application (2200 V, 1100 V or 300 V, 3 ms; followed after 1 s by 100 V, 620 ms). In order to investigate the effect of pulse voltage on metoprolol permeation, 5 single pulses (each separated by 1 min) were applied at varying voltages from 24 to 450 V (pulse time 620 ms). A linear correlation between pulse voltage and cumulative metoprolol transported after 4 h suggested that voltage controls the quantity of drug delivered. Then, the effect of pulse time on metoprolol permeation was studied by varying pulse duration of 5 single 100 V pulses from 80 to 710 ms (each pulse also separated by 1 min). Cumulative metoprolol transported after 4 h increased linearly with the pulse time. Therefore, pulse time was also a control factor of the quantity of drug delivered but to a lesser extent than the voltage at least at 100 V. The mechanisms behind improved transdermal drug delivery by electroporation involved reversible increased skin permeability, electrophoretic movement of drug into the skin during pulse application, and drug release from the skin reservoir formed by electroporation. Thus, electroporation did occur as shown by the increased transdermal permeation, on indicator of structural skin changes and their reversibility. Electroporation has potential for enhancing transdermal drug delivery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 14 (1997), S. 638-644 
    ISSN: 1573-904X
    Keywords: macromolecule ; electroporation ; iontophoresis ; skin ; permeation enhancer ; transdermal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Macromolecules were investigated as chemical enhancers of transdermal transport by skin electroporation. Although unable to enhance passive or iontophoretic transport, macromolecules are proposed to enhance electroporation-assisted delivery by stabilizing the increased permeability caused by high-voltage pulses. Methods. To test this hypothesis, we examined the timescale of transport, the influence of electrical protocol and the influence of macromolecule size, structure, and charge on enhancement of transdermal mannitol transport in vitro by heparin, dextran-sulfate, neutral dextran, and poly-lysine. Results. Skin electroporation increased transdermal mannitol delivery by approximately two orders of magnitude. The addition of macromolecules further increased transport up to five-fold, in support of the proposed hypothesis. Macromolecules present during pulsing enhanced mannitol transport after pulsing for hours, apparently by a macromolecule-skin interaction. No enhancement was observed during passive diffusion or low-voltage iontophoresis, suggesting that macromolecules interact specifically with transport pathways created at high voltage. Although all macromolecules studied enhanced transport, those with greater charge and size were more effective. Conclusions. This study demonstrates that macromolecules can be used as trandermal transport enhancers uniquely suited to skin electroporation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...