ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrogen  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 1 (1992), S. 239-247 
    ISSN: 1572-9834
    Keywords: biomass ; carbohydrates ; nitrogen ; phosphorus ; Phragmites australis ; potassium ; reed ; rhizome ; translocation ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands. Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (〈 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m−2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June. Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (〉 1000 g m−2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites. The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that “reloading” of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management. Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 271 (1993), S. 97-108 
    ISSN: 1573-5117
    Keywords: Myriophyllum aquaticum ; parrotfeather ; nitrogen ; phosphorus ; mass flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The contribution of sediment interstitial water and the water column to the transpiration stream of Myriophyllum aquaticum (Vellozo) Verdcourt was determined to estimate the significance of mass flow in supply of sediment nutrients for plant growth. Sediment interstitial water accounted for about 2% of the water transpired over a 37 day period. Because of the small volume of water that originated in the sediment we concluded that mass flow did not significantly enhance nutrient supply to the roots of M. aquaticum. Relative growth rate (RGR) of adventitious, water roots was greater than whole plant RGR, and RGR of sediment roots was not significantly different from zero, indicating a shift in the biomass allocation after emergence of the apical meristem into the air. Water use, measured by the transpiration coefficient, averaged 260 ml H2O mg DW-1, which is similar to C-4 terrestrial plants. M. aquaticum has leaf characteristics commonly associated with xerophytic habitats. These characteristics may be necessary if a high transpiration rate and a mechanical requirement for high cell turgor pressure, required by a reliance upon hydrostatic pressure for support of the aerial stems, are mutually exclusive because of morphological constraints on hydraulic conductivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...