ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: ammonium ; cyanides ; Gaeumannomyces graminis var tritici ; nitrate ; nitrogen fertilizer ; pseudomonads ; soil conduciveness ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a field cropped with wheat, a high and low level of soil conduciveness to take-all were induced by applying a nitrogen fertilizer with either calcium nitrate or ammonium sulphate. From these two soils, two representative populations of fluorescent pseudomonads were tested for their in situ behaviour. Take-all index and root dry weight were assessed on plants cropped in soils infested with Gaeumannomyces graminis var tritici (Ggt) and each bacterized with one of the isolates of fluorescent pseudomonads. The bacteria tested can be split into three groups: antagonists which reduce take-all, deleterious isolates which aggravate the disease and neutral without evident effect on the disease. The predominance of antagonistic fluorescent pseudomonads in the NH4-treated soil and the predominance of deleterious ones in the NO3-treated soil was confirmed after statistical analysis. The microbial impact on take-all must be more considered as the resulting effect of divergent activities of both rhizobacteria types than the only consequences of the presence of antagonistic pseudomonads. All the high cyanogenic pseudomonads were antagonists in situ and were more numerous in the NH4-treated soil than in the NO3-treated soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: ammonium ; Gaeumannomyces graminis var tritici ; nitrate ; nitrogen fertilizers ; fluorescent pseudomonads ; root system ; soil conduciveness ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria. The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...