ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • lava flow hazard  (4)
Collection
Years
  • 1
    Publication Date: 2020-12-03
    Description: Satellite remote sensing techniques and lava flow forecasting models have been combined to enable a rapid response during effusive crises at poorly monitored volcanoes. Here we used the HOTSAT satellite thermal monitoring system and the MAGFLOW lava flow emplacement model to forecast lava flow hazards during the 2014–2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. Combining satellite data and modeling allowed mapping of the probable evolution of lava flow fields while the eruption was ongoing and rapidly gaining as much relevant information as possible. HOTSAT was used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat 8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time and adding considerable data on lava flow advancement to validate the results of numerical simulations. The integration of satellite data and modeling offers great promise in providing a unified and efficient system for global assessment and real-time response to effusive eruptions, including (i) the current state of the effusive activity, (ii) the probable evolution of the lava flow field, and (iii) the potential impact of lava flows.
    Description: Acknowledgments Thanks are due to European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for SEVIRI data (www.eumetsat.int) and to National Aeronautics and Space Administration (NASA) for MODIS data (modis.gsfc.nasa.gov). Landsat 8 OLI and Eo-1 ALI images are courtesy of the U.S. Geological Survey (earthexplorer. usgs.gov). We are grateful to the Copernicus emergency management service (emergency.copernicus.eu/ mapping/list-of-components/EMSR111) for mapping the actual lava flow field by Cosmo-SkyMed and Pleiades images. We thank the Cartográfica de Canarias, S.A. (www.grafcan.es) for making the Digital Elevation Model of Fogo Island available. HOTSAT and MAGFLOW were developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics, organized by INGV-CT and UNICT (Italy).
    Description: Published
    Description: 2290–2303
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Fogo eruption ; lava flow hazard ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The MAGFLOW model for lava-flow simulations is based on the cellular automaton (CA) approach, and uses a physical model for the thermal and rheological evolution of the flowing lava. We discuss the potential of MAGFLOW to improve our understanding of the dynamics of lava-flow emplacement and our ability to assess lava-flow hazards. Sensitivity analysis of the input parameters controlling the evolution function of the automaton demonstrates that water content and solidus temperatures are the parameters to which MAGFLOW is most sensitive. Additional tests also indicate that temporal changes in effusion rate strongly influence the accuracy of the predictive modelling of lava-flow paths. The parallel implementation of MAGFLOW on graphic processing units (GPUs) can achieve speed-ups of two orders of magnitude relative to the corresponding serial implementation, providing a lava-flow simulation spanning several days of eruption in just a few minutes. We describe and demonstrate the operation of MAGFLOW using two case studies from Mt Etna: one is a reconstruction of the detailed chronology of the lava-flow emplacement during the 2006 flank eruption; and the other is the production of the lava-flow hazard map of the persistent eruptive activity at the summit craters.
    Description: Published
    Description: 3V. Dinamiche e scenari eruttivi
    Description: N/A or not JCR
    Description: restricted
    Keywords: lava flow hazard ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-24
    Description: Pico, the youngest island of the Azores Archipelago (Portugal), is characterized by a central volcano and a 30-km-long fissure zone. Its eruption rate is the highest of the Azores islands, with more than 35 eruptions in the last 2000 years. Here, we estimate the lava-flow hazard for Pico Island by combining the vent opening probability derived from the spatial distribution of eruptive fissures, the classes of expected eruptions inferred from the physical and chemical characteristics of historical eruptions, and the lava-flow paths simulated by the MAGFLOW model. The most likely area to host new eruptions is along a WNW–ESE trend centred on the central volcano, with the highest hazard affecting the two main residential zones of Lajes do Pico and Madalena. Our analysis is the first attempt to assess the lava-flow hazard for Pico Island, and may have important implications for decision-making in territorial management and future land-use planning.
    Description: Published
    Description: 156-161
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow hazard ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-14
    Description: The integration of satellite data and mod - eling represents a step toward the next gen - eration of quantitative hazard assessment in response to effusive volcano eruption onset. Satellite-based thermal remote sensing of hotspots related to effusive activity can ef - fectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indi - cate the current intensity (effusion rate) and potential magnitude (volume). High-spatial- resolution multispectral satellite data can complement field observations for monitor - ing the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the in - tegrated application of satellite remote-sens - ing techniques and lava flow models by using a retrospective analysis of the 2004–2005 ef - fusive eruption at Mount Etna in Italy. The lava flow hazard was assessed by using the HOTSAT volcano hotspot detection system, which works with satellite thermal infrared data, and the MAGFLOW lava flow em - placement model, which is able to relate the flow evolution to eruption conditions at the vent. We used HOTSAT to analyze Moder - ate Resolution Imaging Spectroradiometer ( MODIS ) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data to out - put hotspot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat-7 Enhanced Thematic Mapper+ (ETM+) and Earth Observing 1 (EO-1) Advanced Land Imager (ALI) images complement the field observations to track the flow front position in time and add valuable data on lava flow advancement with which to validate the numerical simulations. Such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists
    Description: Published
    Description: 752-763
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow hazard ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...