ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • interface  (1)
  • reinforced polymers  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 35 (1996), S. 369-381 
    ISSN: 1435-1528
    Keywords: Melt rheology ; linear and non-linear viscoelasticity ; polymer blends ; reinforced polymers ; morphology ; Cox-Merz rule ; aggregation ; percolation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Viscoelastic behavior, phase morphology and flow conditions relationships in polymer/rubber blends have been investigated. The importance of such correlations is illustrated on polymethylmethacrylate (PMMA)/rubber blends subjected to different flow conditions both under small and large deformations. In small-amplitude oscillatory shear (the morphology does not change during the flow) the elastic modulus G′ of the concentrated blends shows a secondary plateau, G′ p , in the low frequency region. This solid-like behavior appears for rubber particle contents beyond the percolation threshold concentration (15%). Morphological observations revealed that for concentrations higher than 15%, the particles are dispersed in a three-dimensional network-type structure. In capillary flow it was found that the network-type structure was destroyed and replaced by an alignment of particles in the flow direction. This morphological modification resulted in a decrease in both viscosity and post-extrusion swell of the blends. Morphological observations revealed that the ordered structure in the flow direction was concentrated only in the skin region of the extrudate, where the shear stress is higher than the secondary plateau, G′ p . A simple kinetic mechanism is proposed to explain the observed morphology. Similarly, steady shear measurements performed in the cone-and-plate geometry revealed alignment of particles in the flow direction for shear stress values higher than G′p.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2623-2634 
    ISSN: 0887-6266
    Keywords: interface ; surface tension ; rheological ; morphology ; polymethylmethacrylate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Impact modifiers with grafted PMMA shell are used to modify polymethylmethacrylate matrix. The composition of the shell is chosen to enhance the interactions at the modifier/matrix interface and to obtain good dispersion of the impact modifier in order to optimize impact strength of the blend. The degree of interactions at the interface is characterized by the interfacial region where the chains of the matrix mix with those of the shell of the modifier. The deviation of the measured viscoelastic behavior of these blends from that predicted by the emulsion models has been attributed to the formation of the network structure due to the association of matrix chains with the shell of the modifier. It is expected that the network structure will decrease with increasing frequency and, as such, the effective volume of the particle is frequency dependent. This study uses the emulsion models to estimate the larger effective volume of the particle and, therefore, the extent of interaction at the interface. In the blends of this study it can be shown that at low modifier levels the solvent swelling of the modifier shell results in stronger interactions with the matrix; this effect is negated by the aggregation of particles at higher modifier loadings. The interaction of core modifier with the PMMA matrix seems to be similar to that of the core-shell modifier. This would not be expected from the calculated interfacial thickness of approximately 4 nm. It is, therefore, proposed that during melt-processing the core modifier surface was altered due to grafting of the matrix PMMA chains during melt-blending to (BA/St) copolymer of the core modifier thus reducing the interfacial tension. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2623-2634, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...