ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • ice-albedo feedback  (1)
  • multivariate data assimilation  (1)
Collection
  • Other Sources  (2)
Source
Language
Years
  • 1
    Publication Date: 2024-02-05
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea‐surface salinity and sea‐level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea‐ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere‐ocean‐ice interaction occurs. One‐year‐long sea‐ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea‐ice concentration from 2011 to 2019 is calibrated by trend‐adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea‐ice edge raw forecast skill is within the range of operational global subseasonal‐to‐seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea‐ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Description: Plain Language Summary: Ocean data sparseness and systematic model errors pose problems for the initialization of coupled seasonal forecasts, especially in polar regions. Our global forecast system follows a seamless approach with refined ocean resolution in the Arctic. The new version presented here features higher computational efficiency and utilizes more ocean and sea‐ice observations. Ice‐edge forecasts outperform a climatological benchmark for about 1 month, comparable to established systems.
    Description: Key Points: We describe an upgrade of the AWI Coupled Prediction System with new ocean and atmosphere models and more observations assimilated. Independent evaluations show advances in the new version on the analysis of the sea‐ice and ocean states against the old one. Calibrated sea‐ice edge forecasts outperform a climatological benchmark for around 1 month in both hemispheres.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5281/zenodo.6335383
    Description: https://github.com/FESOM/fesom2/releases/tag/AWI-CM3_v3.0
    Description: https://doi.org/10.5281/zenodo.6335498
    Description: https://oasis.cerfacs.fr/en/
    Description: https://doi.org/10.5281/zenodo.4905653
    Description: http://forge.ipsl.jussieu.fr/ioserver
    Description: https://doi.org/10.5281/zenodo.6335474
    Description: http://pdaf.awi.de/
    Description: https://doi.org/10.5281/zenodo.6481116
    Keywords: ddc:551.6 ; seamless sea ice forecast ; multivariate data assimilation ; forecast calibration ; spatial probability score
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-22
    Description: To counteract global warming, a geoengineering approach that aims at intervening in the Arctic ice-albedo feedback has been proposed. A large number of wind-driven pumps shall spread seawater on the surface in winter to enhance ice growth, allowing more ice to survive the summer melt. We test this idea with a coupled climate model by modifying the surface exchange processes such that the physical effect of the pumps is simulated. Based on experiments with RCP 8.5 scenario forcing, we find that it is possible to keep the late-summer sea ice cover at the current extent for the next ∼60 years. The increased ice extent is accompanied by significant Arctic late-summer cooling by ∼1.3 K on average north of the polar circle (2021–2060). However, this cooling is not conveyed to lower latitudes. Moreover, the Arctic experiences substantial winter warming in regions with active pumps. The global annual-mean near-surface air temperature is reduced by only 0.02 K (2021–2060). Our results cast doubt on the potential of sea ice targeted geoengineering to mitigate climate change.
    Keywords: 551.68 ; sea ice ; geoengineering ; Arctic sea ice decline ; global warming ; ice-albedo feedback ; sea ice modeling
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...