ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Judy, C.-C., Wolf, S., Holland, M., Labrousse, S., LaRue, M., Wienecke, B., Fretwell, P., Barbraud, C., Greenwald, N., Stroeve, J., & Trathan, P. N. The call of the emperor penguin: legal responses to species threatened by climate change. Global Change Biology, 27, (2021): 5008– 5029, https://doi.org/10.1111/gcb.15806.
    Description: Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
    Description: We acknowledge support of NASA (80NSSC20K1289) to SJ, MH, and of NSF—OPP (1744794) to SJ, ML.
    Keywords: climate risk assessments ; Endangered Species Act ; foreseeable future ; population projections ; resiliency, redundancy and representation (3Rs) ; sea ice projections ; species distribution ; treatment of scientific uncertainty
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(20), (2019): 11206-11218, doi: 10.1029/2019GL084347.
    Description: The emperor penguin, an iconic species threatened by projected sea ice loss in Antarctica, has long been considered to forage at the fast ice edge, presumably relying on large/yearly persistent polynyas as their main foraging habitat during the breeding season. Using newly developed fine‐scale sea icescape data and historical penguin tracking data, this study for the first time suggests the importance of less recognized small openings, including cracks, flaw leads and ephemeral short‐term polynyas, as foraging habitats for emperor penguins. The tracking data retrieved from 47 emperor penguins in two different colonies in East Antarctica suggest that those penguins spent 23% of their time in ephemeral polynyas and did not use the large/yearly persistent, well‐studied polynyas, even if they occur much more regularly with predictable locations. These findings challenge our previous understanding of emperor penguin breeding habitats, highlighting the need for incorporating fine‐scale seascape features when assessing the population persistence in a rapidly changing polar environment.
    Description: This study was supported financially and logistically by the Australian Antarctic Division, the Australian Government's Cooperative Research Centre program through the Antarctic Climate & Ecosystems Cooperative Research Centre, and by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001), the French Polar Institute (Institut Paul Emile Victor, IPEV) research projects, and the postdoctoral scholar award from Woods Hole Oceanographic Institution. S. J. acknowledges support from NSF award 1744794 and 1643901. C. B. and Y. R.‐C. acknowledge support from the BNP Paribas Foundation as part of program SENSEI (SENtinels of the SEa Ice). Y. R.‐C. and R. R. R. acknowledge support from the WWF‐UK through R. Downie. Special thanks go to Y. le Maho in charge of the research program in Terre Adelie in 1996/1997, M. LaRue for the field opportunity in the Ross Sea, illuminating sea icescapes and movements of emperor penguins during the breeding season, D. Ainley for interesting discussions, D. Iles for the proofreading and all colleagues and volunteers involved in the research on emperor penguins in Terre Adélie and at the Mawson Coast, especially D. Rodary and W. Bonneau. All animals in this study were treated in accordance with the IPEV and Polar Environment Committees guidelines, and Australian Antarctic Program Animal Ethics Committee permits. Data and data products related to the paper are available on the following repository http://www.usap‐dc.org/view/dataset/601209 with the doi: 10.15784/601209.
    Description: 2020-03-16
    Keywords: emperor penguin ; sea ice ; iceberg ; fast ice ; polynya ; foraging ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...