ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 14 (1997), S. 638-644 
    ISSN: 1573-904X
    Keywords: macromolecule ; electroporation ; iontophoresis ; skin ; permeation enhancer ; transdermal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Macromolecules were investigated as chemical enhancers of transdermal transport by skin electroporation. Although unable to enhance passive or iontophoretic transport, macromolecules are proposed to enhance electroporation-assisted delivery by stabilizing the increased permeability caused by high-voltage pulses. Methods. To test this hypothesis, we examined the timescale of transport, the influence of electrical protocol and the influence of macromolecule size, structure, and charge on enhancement of transdermal mannitol transport in vitro by heparin, dextran-sulfate, neutral dextran, and poly-lysine. Results. Skin electroporation increased transdermal mannitol delivery by approximately two orders of magnitude. The addition of macromolecules further increased transport up to five-fold, in support of the proposed hypothesis. Macromolecules present during pulsing enhanced mannitol transport after pulsing for hours, apparently by a macromolecule-skin interaction. No enhancement was observed during passive diffusion or low-voltage iontophoresis, suggesting that macromolecules interact specifically with transport pathways created at high voltage. Although all macromolecules studied enhanced transport, those with greater charge and size were more effective. Conclusions. This study demonstrates that macromolecules can be used as trandermal transport enhancers uniquely suited to skin electroporation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: pulmonary drug delivery ; dry powder ; large porous particles ; excipients ; aerosolization properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Relatively large (〉5 µm) and porous (mass density 〈 0.4 g/cm3) particles present advantages for the delivery of drugs to the lungs, e.g., excellent aerosolization properties. The aim of this study was, first, to formulate such particles with excipients that are either FDA-approved for inhalation or endogenous to the lungs; and second, to compare the aerodynamic size and performance of the particles with theoretical estimates based on bulk powder measurements. Methods. Dry powders were made of water-soluble excipients (e.g., lactose, albumin) combined with water-insoluble material (e.g., lung surfactant), using a standard single-step spray-drying process. Aerosolization properties were assessed with a Spinhaler TM device in vitro in both an Andersen cascade impactor and an AerosizerTM.. Results. By properly choosing excipient concentration and varying the spray drying parameters, a high degree of control was achieved over the physical properties of the dry powders. Mean geometric diameters ranged between 3 and 15 µm, and tap densities between 0.04 and 0.6 g/cm3. Theoretical estimates of mass mean aerodynamic diameter (MMAD) were rationalized and calculated in terms of geometric particle diameters and bulk tap densities. Experimental values of MMAD obtained from the AerosizerTM most closely approximated the theoretical estimates, as compared to those obtained from the Andersen cascade impactor. Particles possessing high porosity and large size, with theoretical estimates of MMAD between 1−3 µm, exhibited emitted doses as high as 96% and respirable fractions ranging up to 49% or 92%, depending on measurement technique. Conclusions. Dry powders engineered as large and light particles, and prepared with combinations of GRAS (generally recognized as safe) excipients, may be broadly applicable to inhalation therapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...