ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • conformational change  (1)
  • solution structure  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-4943
    Keywords: Receptor/ligand binding ; conformational change ; FTIR ; circular dichroism ; stem cell factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Stem cell factor (SCF) is thought to be a member of the four-helical bundle cytokine superfamily, and exists in solution as a noncovalent homodimer. It is the ligand for Kit, a tyrosine kinase type III receptor. The interaction of SCF and Kit affects early hematopoietic progenitors, as well as gametocytes, melanocytes, and mast cells. Upon binding of SCF the Kit undergoes dimerization and transphosphorylation. Circular dichroism (CD), intrinsic fluorescence, and Fourier transform infrared (FTIR) spectroscopy were used for conformational analyses of free SCF, soluble Kit (sKit), and the complex. The sKit consisted of the extracellular domain of Kit, contained five Ig-like domains, and was prepared from the conditioned media of transfected Chinese hamster ovary cells. With these techniques, a reproducible conformational change was seen upon ligand/receptor binding. The far-UV CD and FTIR spectroscopy indicated a slight increase in the α-helical content. The near-UV CD and fluorescence spectra showed changes in the environments of the aromatic amino acids. The thermal denaturation of SCF was not affected by complex formation, while the melting temperature of sKit increased only a few degrees when binding SCF. This indicates that binding is temperature dependent, consistent with titration calorimetry results published previously which demonstrated that there is a large enthalpy of binding. The conformational changes which accompany SCF/sKit binding could play a role in the receptor dimerization and signal transduction which follow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: NFκB ; iκB ; FITR ; CD ; light scattering ; solution structure ; thermal stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The N-terminal domain (1–318 amino acids) of mouse NFκB (p65) has been purified to homogeneity from the soluble fraction of Escherichia coli cells expressing this protein. Its complex with a full-length iκB-α (MAD3, 1–317 amino acids) molecule was generated by binding the E. coli-derived iκB-α to the purified NFκB and purifying the complex by sequential chromatography. The stoichiometry of NFκB to iκB in the complex was determined to be 2 to 1 by light scattering and SDS–polyacrylamide gel electrophoresis. The secondary structure of the NFκB (p65) determined by Fourier-transform infrared (FTIR) spectroscopy is in good agreement with that of the p50 in the crystal structure of the p50/DNA complex, indicating that no significant structural change in NFκB occurs upon binding of DNA. The FTIR spectrum of the NFκB/iκB complex indicates that its secondary structure is composed of 17% α-helix, 39% β-strand, 18% irregular structures, and 26% β-turns and loops. By comparing these data to the FTIR data for NFκB alone, it is concluded that the iκB (MAD3) in the complex contains 35% α-helix, 27% β-strand, 22% irregular structures, and 16% β-turns and loops. Circular dichroism (CD) analysis of a shorter form of iκB (pp40) indicates that it contains at least 20% α-helix and that the iκB subunit accounts for nearly all of the α-helix present in the NFκB/iκB complex, consistent with the FTIR results. The stabilities of NFκB, iκB, and their complex against heat-induced denaturation were investigated by following changes in CD signal. The results indicate that the thermal stability of iκB is enhanced upon the formation of the NFκB/iκB complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...