ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6881
    Keywords: Mitochondrial permeability transition ; cyclosporin A ; cyclosporin analogs ; transmembrane potential ; membrane surface potential ; lipid mediators
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The mitochondrial permeability transition pore allows solutes with a m.w. ≲1500 to equilibrate across the inner membrane. A closed pore is favored by cyclosporin A acting at a high-affinity site, which may be the matrix space cylophilin isozyme. Early results obtained with cyclosporin A analogs and metabolites support this hypothesis. Inhibition by cyclosporin does not appear to require inhibition of calcineurin activity; however, it may relate to inhibition of cyclophilin peptide bond isomerase activity. The permeability transition pore is strongly regulated by both the membrane potential (Δψ) and ΔpH components of the mitochondrial protonmotive force. A voltage sensor which is influenced by the disulfide/sulhydryl state of vicinal sulfhydryls is proposed to render pore opening sensitive to Δψ. Early results indicate that this sensor is also responsive to membrane surface potential and/or to surface potential gradients. Histidine residues located on the matrix side of the inner membrane render the pore responsive to ΔpH. The pore is also regulated by several ions and metabolites which act at sites that are interactive. There are many analogies between the systems which regulate the permeability transition pore and the NMDA receptor channel. These suggest structural similarities and that the permeability transition pore belongs to the family of ligand gated ion channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 335-345 
    ISSN: 1573-6881
    Keywords: Mitochondrial channels ; respiratory chain ; complex I ; ubiquinone ; cell death ; disease ; aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract This review summarizes recent progress on the regulation of the mitochondrial permeabilitytransition pore, an inner membrane channel that may play a role in cell death. We brieflycover its key control points as emerged over the last few years from studies on isolatedmitochondria; and describe in some detail our recent results indicating that the pore is modulatedby the respiratory chain complex I and can be specifically blocked by selected ubiquinoneanalogs. We discuss the potential relevance of these findings for the structural definition ofthe permeability transition pore and illustrate the pharmacological perspectives they offer indiseases where mitochondrial dysfunction is suspected to play a key role.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...