ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 377-385 
    ISSN: 0021-9304
    Keywords: endothelial cell adhesion ; avidin-biotin ; fibronectin ; total internal reflection fluorescence microscopy (TIRFM) ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A preadsorbed layer of “heterogeneous” integrin-dependent and -independent protein was used to enhance initial integrin-mediated endothelial cell attachment and spreading. Glass substrates were treated with fibronectin (Fn) and avidin coupled through adsorbed biotinylated bovine serum albumin (b-BSA). The slides then were seeded with biotinylated BAEC. Control “homogeneous” surfaces were slides adsorbed with either Fn or avidin coupled to b-BSA. The cells were incubated for 0.5 h in serum-containing media and exposed to a range of shear stresses in a laminar flow variable-height flow chamber. The critical shear stress to detach 50% of the seeded cells on the heterogeneous ligand surface was significantly greater than for either of the control homogeneous ligand systems (p 〈 0.001). Cellular spreading during the initial period of 0-2 h also was higher (p 〈 0.05) on the heterogeneous ligand-treated surface than on the surface of either of the homogeneous controls. The close contact area of the cell membrane with the substrate 1 h after seeding in serum-containing media was measured using TIRFM. Cells attached onto the heterogeneous ligand-treated surfaces had a significantly (p 〈 0.01) higher area of close contact with the substrate, which is consistent with a greater degree of attachment and spreading. The results indicate that the combination of integrin-dependent and -independent adhesion systems using heterogeneous ligands further enhances initial endothelial cell attachment and spreading. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 377-385, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 57-65 
    ISSN: 0021-9304
    Keywords: cell adhesion ; avidin-biotin ; endothelialization ; vascular grafts ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Binding between the protein avidin and the vitamin biotin was used as an extrinsic, high affinity receptor-ligand system to augment the intrinsic integrin-dependent cellular adhesion mechanism. Glass substrates were coupled with avidin receptors through an adsorbed film of biotinylated bovine serum albumin (b-BSA). The avidin-treated slides then were seeded with biotinylated bovine aortic endothelial cells (BAEC). A 3:1 ratio of BSA:b-BSA provided the best results in terms of specific cellular attachment, growth, and spreading. Control surfaces consisted of bare glass or glass with adsorbed BSA. Attachment of unmodified BAEC to glass decreased in the presence of anti-β1 integrin antibody. Adhesion of biotinylated BAEC to avidin-treated slides was not affected by anti-β1 integrin antibody, consistent with integrin-independent avidin-mediated adhesion. The initial rate of cell spreading was greatest for avidin-biotin-mediated adhesion (80.0 ± 25.6 μm2/h), followed by integrin-dependent cellular adhesion on plain glass (35.7 ± 7.7 μm2/h) and, finally, by adhesion on BSA-coated protein surfaces (10.2 ± 0.3 μm2/;h). Biotinylated and unmodified BAEC, cultured for 1 h in serum-containing media, were subjected to laminar flow in a variable-height flow chamber that provided a range of shear stresses from 0.2 to 75 dynes/cm2. The critical shear stress required to detach 50% of the cells in serum-containing media increased from 4.6 ± 0.8 dynes/cm2 for integrin-dependent adhesion to 12.6 ± 1.2 dynes/cm2 for avidin-biotin-mediated adhesion. Avidin-mediated attachment for biotinylated BAEC increased initial cellular spreading rates and strength of attachment (i.e., at 1 h) by a factor of two and three, respectively. These results support the hypothesis that integrin-mediated cell attachment and spreading can be enhanced using high affinity integrin-independent binding. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 57-65, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...