ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • accelerated failure  (1)
  • constrained geometry catalyst technology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 84 (1997), S. 159-173 
    ISSN: 1573-2673
    Keywords: fracture ; fatigue ; polyethylene ; crack propagation ; accelerated failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Correlation in mechanisms and kinetics of step-wise fatigue crack propagation in polyethylene pipe specimens of different geometries is studied experimentally. It is shown that crack propagation in a non-standard specimen cut from a real pipe and conserving the pipe geometry can be effectively simulated using a standard compact tension specimen. Good correlation in both kinetics of step-wise crack propagation and fractography between the specimens is achieved if experimental conditions are chosen to assure equal values of (a) stress intensity factor and (b) stress intensity factor gradient at the initial notch tips. These results extend previous technique of fatigue accelerating slow crack growth used to predict lifetime of polyethylene pipes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1301-1315 
    ISSN: 0887-6266
    Keywords: polyethylene ; ethylene-octene copolymers ; constrained geometry catalyst technology ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ethylene-octene copolymers prepared by Dow's INSITE™ constrained geometry catalyst technology present a broad range of solid-state structures from highly crystalline, lamellar morphologies to the granular morphology of low crystallinity copolymers. As the comonomer content increases, the accompanying tensile behavior changes from necking and cold drawing typical of a semicrystalline thermoplastic to uniform drawing and high recovery characteristic of an elastomer. Although changes in morphological features and tensile properties occur gradually with increasing comonomer content, the combined body of observations from melting behavior, morphology, dynamic mechanical response, yielding, and large-scale deformation suggest a classification scheme with four distinct categories. Materials with densities higher than 0.93 g/cc, type IV, exhibit a lamellar morphology with well-developed spherulitic superstructure. Type III polymers with densities between 0.93 and 0.91 g/cc have thinner lamellae and smaller spherulites. Type II materials with densities between 0.91 and 0.89 g/cc have a mixed morphology of small lamellae and bundled crystals. These materials can form very small spherulites. Type I copolymers with densities less than 0.89 g/cc have no lamellae or spherulites. Fringed micellar or bundled crystals are inferred from the low degree of crystallinity, the low melting temperature, and the granular, nonlamellar morphology. © 1996 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...