ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • UV absorption spectra  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 17 (1993), S. 353-373 
    ISSN: 1573-0662
    Keywords: UV absorption spectra ; photolysis ; organic difunctional nitrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Difunctional organic nitrates are important products of the atmospheric reaction of NO3 radicals with unsaturated hydrocarbons about which relatively little is known. In a continuation of the investigation of the atmospheric chemistry of such compounds, the UV absorption spectra of the following organic dinitrates and keto nitrates have been quantitively measured in the gas phase at 298±2 K and atmospheric pressure: 1,2-propandiol dinitrate, CH3CH(ONO2)CH2(ONO2); 1,2-butandiol dinitrate, CH3CH2CH(ONO2)CH2(ONO2); 2,3-butandiol dinitrate, CH3CH(ONO2)CH(ONO2)CH3;cis 1,4-dinitrooxy-2-butene, CH2(ONO2)CH=CHCH2(ONO2); 3,4-dinitrooxy-1-butene, CH2(ONO2CH(ONO2)CH=CH2; α-nitrooxy acetone, CH3COCH2(ONO2); 1-nitrooxy-2-butanone, CH3CH2COCH2(ONO2); 3-nitrooxy-2-butanone, CH3CH(ONO2)COCH3. Although the UV spectra of the nitrates are all very similar in shape those of the keto nitrates are red-shifted compared to the dinitrates and in the spectral range of atmospheric interest (λ〉290 nm) their absorption cross-sections are approximately a factor of 5 higher. The cross-sections of the dinitrates are a factor of 2 higher than those reported in the literature for the corresponding alkyl mononitrates. The UV absorption cross-sections of the difunctional nitrates were used in combination with solar actinic flux data to estimate photolysis frequencies and consequently atmospheric lifetimes for these compounds. The results indicate that for the saturated difunctional nitrates studied in this work photolysis will generally be somewhat some important than reaction with OH radicals as an atmospheric removal process. However, for unsaturated nitrates loss due to reaction with OH will dominate over photolysis as an atmospheric sink. Preliminary FT-IR analyses of the photolysis products of α-nitrooxy acetone, 3-nitrooxy-2-butanone and 2,3-butandiol dinitrate using both mercury and fluorescent lamps indicate that NO2 is released in the primary step. The further reactions of the radicals thus produced result in the formation of CO, aldehydes and PAN. The possible significance of the results for difunctional organic nitrate as reservoirs for reactive odd nitrogen NO y in the atmosphere, especially during the night, is briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...