ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Our work on detecting and cataloging solar microflares using an automated method is illustrated in the accompanying figure. The figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of The Compton Gamma Ray Observatory (CGRO). It also shows the distribution extending below the distribution obtained at Goddard Space Flight Center (GSFC) by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different Burst and Transient Source Experiment (BATSE) detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in the earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10 (exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000 s (exp -1). Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the Burst and Transient Source Experiment Large Area Detector data (BATSE LAD). These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detector were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 deg. off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission that covers solar maximum and constructed the microflare distribution shown in the figure. The results of the automated search start to deviate from the manual search results below about 1000 s (exp -1). Not only do we now have this distribution but we have a database of solar microflares that was used to construct the distribution. This database contains the signal at higher energy channels as well as that in channel zero (and below). From this one can, using software at GSFC, construct a photon spectrum for some of the larger microflares. It can also be used in other solar studies, especially those that correlate the X-ray flux with emission at other wavelengths. With some additional effort we hope to integrate this database into the corresponding one residing at the Solar Data Analysis Center at GSFC. The entire CGRO mission's data can now be reprocessed to obtain the microflare distribution at all phases of the solar cycle. This work is in progress. The results of this work will be presented in forthcoming scientific workshops and conferences.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The aim of this project was to investigate and improve upon existing methods of analysing data from COMITEL on the Gamma Ray Observatory for neutrons emitted during solar flares. In particular, a strategy for placing confidence intervals on neutron energy distributions, due to uncertainties on the response matrix has been developed. We have also been able to demonstrate the superior performance of one of a range of possible statistical regularization strategies. A method of generating likely models of neutron energy distributions has also been developed as a tool to this end. The project involved solving an inverse problem with noise being added to the data in various ways. To achieve this pre-existing C code was used to run Fortran subroutines which performed statistical regularization on the data.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: The report concerns work on detecting and cataloging solar microflares using an automated. An accompanying figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of CGRO. It also shows the distribution extending below the distribution obtained at GSFC by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different BATSE detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in an earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10(exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000/s. Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the BATSE Large Area Detector (LAD) data. These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detectors were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 degrees off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission that covers solar maximum and constructed the microflare distribution shown in the figure. The results of the automated search start to deviate from the manual search results below about 1000/s. Not only do we now have this distribution but we have a database of solar microflares that was used to construct the distribution. This database contains the signal at higher energy channels as well as that in channel zero (and below). From this one can, using software at GSFC, construct a photon spectrum for some of the larger microflares. It can also be used in other solar studies, especially those that correlate the X-ray flux with emission at other wavelengths. With some additional effort we hope to integrate this database into the corresponding one residing at the Solar Data Analysis Center at GSFC. The entire CGRO mission's data can now be reprocessed to obtain the microflare distribution at all phases of the solar cycle. This work is in progress. The results of this work will be presented in forthcoming scientific workshops and conferences.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...