ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 16 (1997), S. 253-259 
    ISSN: 1572-9591
    Keywords: Fusion ; accidents ; waste ; materials ; blankets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Within the European SEAL (Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium–lead; dual-cooled lithium–lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium–aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-17
    Description: Most depth extrapolation schemes are based on a one-way wave equation, which possesses limited ability to provide the true amplitude values of reflectors that are highly important for amplitude-versus-offset inversion. After analysing the weaknesses of current migration methods and explaining the reason why wavefields cannot be extrapolated using the full-wave equation in the depth direction, a full-wave-equation migration method based on a new seismic acquisition system is proposed to provide accurately dynamic information of reflection interfaces for migration. In this new seismic acquisition system, double sensor data are provided to solve the acoustic wave equation in the depth domain accurately. To test the performance of recovering the true amplitudes of the full-wave-equation migration, we used a single shot gather and several multiple shot gathers produced by a 2-D numerical modelling technique to demonstrate that our methodology provides better estimated true amplitudes than that of the conventional Kirchhoff and reverse time migration algorithms through comparison of the amplitudes of the target reflectors with its theoretical reflection coefficients. Because double sensors are applied to implement the full-wave-equation migration, it is necessary to study the perfect distance between the double sensors to diminish the migration error for future practical exploration. Based on the application of the full-wave-equation migration method to the first set of actual seismic data collected from our double sensor acquisition system, our proposed method yields higher imaging quality than that of conventional methods. Numerical experiments and actual seismic data show that our proposed method has built a new bridge between true amplitude common-shot migration and full-wave-equation depth extrapolation.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...