ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sea of Marmara  (1)
  • Strontium isotope stratigraphy  (1)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4698–4717, doi:10.1002/ggge.20279.
    Description: Most oceanic islands are due to excess volcanism caused by thermal and/or compositional mantle melting anomalies. We call attention here to another class of oceanic islands, due not to volcanism but to vertical motions of blocks of oceanic lithosphere related to transform tectonics. Sunken tectonic islands capped by carbonate platforms have been previously identified along the Vema and Romanche transforms in the equatorial Atlantic. We reprocessed seismic reflection lines, did new facies analyses and 87Sr/86Sr dating of carbonate samples from the carbonate platforms. A 50 km long narrow paleoisland flanking the Vema transform, underwent subsidence, erosion, and truncation at sea level; it was then capped by a 500 m thick carbonate platform dated by 87Sr/86Sr at ∼11–10 Ma. Three former islands on the crest of the Romanche transverse ridge are now at ∼900 m bsl; they show horizontal truncated surfaces of oceanic crust capped by ∼300 m thick carbonate platforms, with 10–6 Ma Sr isotopic ages. These sunken islands formed due to vertical tectonics related to transtension/transpression along long-offset slow-slip transforms. Another tectonic sunken island is Atlantis Bank, an uplifted gabbroic block along the Atlantis II transform (SW Indian Ridge) ∼700 m bsl. A modern tectonic island is St. Peter and St. Paul Rocks, a rising slab of upper mantle located at the St. Paul transform (equatorial Atlantic). “Cold” tectonic islands contrast with “hot” volcanic islands related to mantle thermal and/or compositional anomalies along accretionary boundaries and within oceanic plates, or to supra-subduction mantle melting that gives rise to islands arcs.
    Description: Work supported by the Italian Consiglio Nazionale Ricerche and Fondazione Onlus Rita Levi-Montalcini.
    Description: 2014-04-24
    Keywords: Tectonic islands ; Oceanic transform faults ; Carbonate platforms ; Facies analysis ; Strontium isotope stratigraphy ; Calcareous nannofossil biostratigraphy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-08
    Description: Based on morphobathymetric and seismic reflection data, we studied a large landslide body from the eastern Sea of Marmara (NW Turkey), along the main strand of the North Anatolian Fault, one of the most seismically active geological structures on Earth. Due to its location and dimensions, the sliding body may cause tsunamis in case of failure possibly induced by an earthquake. This could affect heavily the coasts of the Sea of Marmara and the densely populated Istanbul Metropolitan area, with its exposed cultural heritage assets. After a geological and geometrical description of the landslide, thanks to high-resolution marine geophysical data, we simulated numerically possible effects of its massive mobilization along a basal displacement surface. Results, within significant uncertainties linked to dimensions and kinematics of the sliding mass, suggest generation of tsunamis exceeding 15–20 m along a broad coastal sector of the eastern Sea of Marmara. Although creeping processes or partial collapse of the landslide body could lower the associated tsunami risk, its detection stresses the need for collecting more marine geological/geophysical data in the region to better constrain hazards and feasibility of specific emergency plans.
    Description: Published
    Description: 2295-2310
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Landslide ; Tsunamis ; Sea of Marmara ; North Anatolian Fault ; Risk Assessment ; Earthquakes ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...