ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give a better understanding of a major magnetospheric process, wave-particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: NASA. George C. Marshall Space Flight Center Solar Terrestrial Observatory Space Station Workshop Report; p 8-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give us a better understanding of a major magnetospheric process, wave particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Alabama Univ. Coordinated Study of Solar-Terrestrial Payloads on Space Station; 2 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: IEEE Transactions on Geoscience and Remote Sensing; GE-18; Jan. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...