ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of International Association of Geoanalysts for personal use, not for redistribution. The definitive version was published in Geostandards and Geoanalytical Research 39 (2015): 31-46, doi:10.1111/j.1751-908X.2014.00289.x.
    Description: Here we present an improved method for the determination of the boron isotopic composition of volcanic glasses with boron concentrations of as low as 0.4–2.5 μg g−1, as is typical for mid-ocean ridge basalt glasses. The analyses were completed by secondary ion mass spectrometry using a Cameca 1280 large-radius ion microprobe. Transmission and stability of the instrument and analytical protocol were optimised, which led to an improvement of precision and reduction in surface contamination and analysis time compared with earlier studies. Accuracy, reproducibility (0.4–2.3‰, 2 RSD), measurement repeatability (2 RSE = 2.5–4.0‰ for a single spot with [B] = 1 μg g−1), matrix effects (≪ 0.5‰ among komatiitic, dacitic and rhyolitic glass), machine drift (no internal drift; long-term drift: ~ 0.1‰ hr−1), contamination (~ 3–8 ng g−1) and machine background (0.093 s−1) were quantified and their influence on samples with low B concentrations was determined. The newly developed set-up was capable of determining the B isotopic composition of basaltic glass with 1 μg g−1 B with a precision and accuracy of ± 1.5‰ (2 RSE) by completing 4–5 consecutive spot analyses with a spatial resolution of 30 μm × 30 μm. Samples with slightly higher concentrations (≥ 2.5 μg g−1) could be analysed with a precision of better than ± 2‰ (internal 2 RSE) with a single spot analysis, which took 32 min.
    Description: This study was financially supported by the NSF ocean sciences program (OCE grant 1232996 to Dorsey Wanless and HRM).
    Description: 2015-06-12
    Keywords: Boron isotopes ; MORB ; Low concentration ; SIMS ; Ionprobe
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiedenbeck, M., Trumbull, R. B., Rosner, M., Boyce, A., Fournelle, J. H., Franchi, I. A., Halama, R., Harris, C., Lacey, J. H., Marschall, H., Meixner, A., Pack, A., von Strandmann, P. A. E. P., Spicuzza, M. J., Valley, J. W., & Wilke, F. D. H. Tourmaline reference materials for the In situ analysis of oxygen and lithium isotope ratio compositions. Geostandards and Geoanalytical Research, (2020), doi:10.1111/ggr.12362.
    Description: Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be 〈 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.
    Description: JWV and MJS (University of Wisconsin) are supported by the U.S. National Science Foundation (EAR‐1524336) and Department of Energy (DE‐FG02‐93‐ER14389). MR acknowledges the use of the NSF‐supported WHOI ICP‐MS facility and thanks Larry Ball and Jerzy Blusztajn for their assistance. Analyses at Bristol were supported by NERC grant NER/C510983/1. Finally, we wish to thank the Harvard Museum for ongoing support of such projects. Open access funding enabled and organized by ProjektDEAL.
    Keywords: Tourmaline ; Lithium isotopes ; Oxygen isotopes ; Reference materials ; SIMS ; Matrix effect
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...