ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Key words Fission yeast ; RNA polymerase I ; Two-hybrid system ; α-Subunit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42 kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key wordsSchizosaccharomyces pombe ; RNA polymerase I ; Interspecific complementation ; α-Subunit ; Deletion analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called α-related subunits which are shared only by polymerases I and III. The α-related subunits show limited homology with the α-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of α-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17 kDa which can functionally replace AC19 – an α-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae– and was thus named rpa17 +. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17 + shows that the gene is essential for cell growth. Sequence comparison with other α-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the α-related subunits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...