ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pulvinus  (1)
  • Sucrose concentration  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 193 (1994), S. 530-535 
    ISSN: 1432-2048
    Keywords: Amino acid ; Sucrose concentration ; Spinacia (leaf) ; Metabolite compartmentation ; Subcellular volumes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cellular and subcellular volumes in mature leaves of spinach (Spinacia oleracea L. US Hybrid 424) were determined stereologically from light and electron micrographs. Forty-nine-day-old leaves of spinach with a total leaf volume of 1177 μL per mg chlorophyll (Chl) were found to be composed of 3% epidermis, 58% mesophyll, 1% vascular tissue, 5% apoplasm and 32% gas space. In the epidermal cells 89% of the volume was occupied by the vacuole. The mesophyll cells consisted, expressed in mg·Chl−1, of 546 μL (79%) vacuole, 66 μL (9.5%) chloroplast stroma, 24 μL (34%) cytosol, 3.7 μL (0.5%) mitochondria and 2.1 μL (0.3%) nucleus. From previous measurements of the subcellular levels of sucrose, of phosphorylated intermediates of carbohydrate metabolism, of malate, oxoglutarate and various amino acids in illuminated leaves, and the above subcellular volumes, the corresponding subcellular metabolite concentrations have been determined. Of the substances measured, only with malate was the concentration higher in the vacuole than in the cytosol. The concentration of sucrose in the cytosol was 5 times, and that of amino acids even 30 times higher than in the vacuole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Actin ; Cell elongation ; Gravitropism ; Microtubule ; Pulvinus ; Zea (gravitropism)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Characterization of gravitropic bending in the maize stem pulvinus, a tissue that functions specifically in gravity responses, demonstrates that the pulvinus is an ideal system for studying gravitropism. Gravistimulation during the second of three developmental phases of the pulvinus induces a gradient of cell elongation across the non-growing cells of the pulvinus, with the most elongation occurring on the lower side. This cell elongation is spatially and temporally separated from normal internodal cell elongation. The three characterized growth phases in the pulvinus correspond closely to a specialized developmental sequence in which structural features typical of cells not fully matured are retained while cell maturation occurs in surrounding internodal and nodal tissue. For example, the lignification of supporting tissue and rearrangement of transverse microtubules to oblique that occur in the internode when cell elongation ceases are delayed for up to 10 d in the adjacent cells of the pulvinus, and only occurs as a pulvinus loses its capacity to respond to gravistimulation. Gravistimulation does not modify this developmental sequence. Neither wall lignification nor rearrangement of transverse microtubules occurs in the rapidly elongating lower side or non-responsive upper side of the pulvinus until the pulvinus loses the capacity to bend further. Gravistimulation does, however, lead to the formation of putative pit fields within the expanding cells of the pulvinus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...