ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-25
    Description: The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Lei -- Soonpaa, Mark H -- Adler, Eric D -- Roepke, Torsten K -- Kattman, Steven J -- Kennedy, Marion -- Henckaerts, Els -- Bonham, Kristina -- Abbott, Geoffrey W -- Linden, R Michael -- Field, Loren J -- Keller, Gordon M -- R01 HL079275/HL/NHLBI NIH HHS/ -- R01 HL083126/HL/NHLBI NIH HHS/ -- R01 HL083126-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):524-8. doi: 10.1038/nature06894. Epub 2008 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432194" target="_blank"〉PubMed〈/a〉
    Keywords: Activins/pharmacology ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation/drug effects ; Cell Line ; Cell Lineage/drug effects ; Embryonic Stem Cells/*cytology/drug effects/*metabolism/transplantation ; Fibroblast Growth Factor 2/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Myocytes, Cardiac/*cytology/drug effects/metabolism ; Patch-Clamp Techniques ; Proto-Oncogene Proteins c-kit/genetics ; Vascular Endothelial Growth Factor A/pharmacology ; Vascular Endothelial Growth Factor Receptor-2/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...