ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 2539-2548 
    ISSN: 0887-624X
    Keywords: nonaqueous ; dispersion polymerization ; functional submicron particles ; poly(methyl methacrylate) ; SEP stabilizer ; oxazoline ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A novel oxazoline-functional methacrylate was prepared and employed as comonomer to produce nonaqueous dispersions of oxazoline-functional polymer particles. In nonaqueous free radical dispersion copolymerization of methylmethacrylate in the presence of oxazoline-functional methacrylate, ethyleneglycoldimethacrylate crosslinking agent, AIBN initiator, and polystyrene-block-poly(ethene-alt-propene) dispersing agent, the average polymer particle size, varying between 100 and 500 nm, was controlled by the dispersing agent contents. According to titration with HClO4 all oxazoline groups regardless of their location at particle surface or bulk, were accessible. Glass transition temperature decreased from 120 to 0°C when oxazoline functional methacrylate was increased from 0 to 95 mol %. As imaged by atomic force microscopy incorporation of the new oxazoline-functional methacrylate improved film formation. Oxazoline-functional polymer particles were easy to redisperse in a variety of other diluents. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2539-2548, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 2549-2560 
    ISSN: 0887-624X
    Keywords: halfsandwich metallocene ; homogeneous catalysis ; terpolymerization ; ethene ; styrene ; 1-octene ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ethene was co- and terpolymerized with 1-octene and styrene using the methylalumoxane (MAO) activated halfsandwich metallocene Me2Si(Me4Cp)(N-t.-butyl)TiCl2(Cp = cyclopentadienyl, Me = methyl) as catalyst. At temperatures of 40 and 60°C styrene concentration was varied in order to investigate the influence of the comonomers. Despite decreasing the overall activity with respect to ethene/1-octene copolymerization, polymerization activity was found to exibit a relative maximum with increasing styrene concentration. An explanation is given taking two different comonomer effects into account. Low styrene concentration promoted higher 1-octene incorporation compared to ethene/1-octene copolymerization but significantly lowered the molecular weight of the terpolymers. With constant ethene and 1-octene concentration it was possible to produce ethene/1-octene/styrene terpolymers with styrene content varying from 0 to 25 mol % and 1-octene content varying from 8 to 21 mol %. All terpolymers were amorphous. With constant ethene content it was found possible to vary their glass transition temperature with 1-octene/styrene molar ratio incorporated in the terpolymer. 13C-NMR spectroscopic microstructure analysis showed that no styrene/1-octene sequences were found in the terpolymer backbone. Furthermore terpolymerizations were conducted successfully incorporating norbornene, 1,5-hexadiene and propene as monomers in terpolymertization with ethene and styrene. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2549-2560, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1821-1827 
    ISSN: 0887-624X
    Keywords: morphology ; grafting ; oxazoline-functionalized polymer particles ; carbolic acids ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oxazoline-functionalized, crosslinked PMMA-particles, prepared by free radical nonaqueous dispersion polymerization, were grafted with n-decanoic acid and carboxylic acid-terminated polystyrene. Oxazoline groups, separated by an alkylspacer from the PMMA backbone, showed enhanced mobility with respect to the backbone, as evaluated by solid-state NMR spectroscopy using a dipolar filter. As a function of molecular mass of the carboxylic acid, the oxazoline conversion varied from 70 mol % for n-decanoic acid to 1% for monocarboxylate-terminated polystyrene CT-PS with Mn: 15,900 g/mol. Morphological studies, performed by TEM, showed that reaction with acid terminated polystyrene results exclusively in interfacial grafting at the particle surface. At low grafting levels a raspberry-like morphology was obtained, whereas grafting levels exceeding 14 wt % CT-PS resulted in core-shell morphology. Core-shell morphology was also verified by static light scattering using toluene solvent, which is isorefractive to the PMMA core. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1821-1827, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 587-592 
    ISSN: 0887-624X
    Keywords: 2-phenyl-4-methylene-1,d-dioxolane ; methylene-1,3-dioxolanes ; cationic photopolymerization ; poly(keto-ether)s ; poly(alkylene-ether-ketone)s ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0887-624X
    Keywords: propene ; polymerization ; zirconocene ; methylalumoxane ; chain transfer ; end groups ; hydrogen ; 2,1-insertion ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Propene was polymerized at 40°C and 2-bar propene in toluene using methylalumoxane (MAO) activated rac-Me2Si(Benz[e]Indenyl)2ZrCl2 (BI) and rac-Me2Si(2-Me-Benz[e]Indenyl)2ZrCl2 (MBI). Catalyst BI/MAO polymerizes propene with high activity to afford low molecular weight polypropylene, whereas MBI/MAO is less active and produces high molecular weight polypropylene. Variation of reaction conditions such as propene concentration, temperature, concentration of catalyst components, and addition of hydrogen reveals that the lower molecular weight polypropylene produced with BI/MAO results from chain transfer to propene monomer following a 2,1-insertion. A large fraction of both metallocene catalyst systems is deactivated upon 2,1-insertion. Such dormant sites can be reactivated by H2-addition, which affords active metallocene hydrides. This effect of H2-addition is reflected by a decreasing content of head-to-head enchainment and the formation of polypropylene with n-butyl end groups. Both catalysts show a strong dependence of activity on propene concentration that indicates a formal reaction order of 1.7 with respect to propene. MBI/MAO shows a much higher dependence of the activity on temperature than BI/MAO. At elevated temperatures, MBI/MAO polymerizes propene faster than BI/MAO. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 1-8 
    ISSN: 0887-624X
    Keywords: Ziegler-Natta catalysts ; propene ; polymerization ; zirconocene ; methylalumoxane ; homogeneous catalysts ; supported catalysts ; morphology ; copolymerization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The isoselective propene polymerization using the supported catalyst SiO2/MAO/Me2Si(2-Me-Benz[e]Ind)2ZrCl2/AlR3 was investigated and compared with propene polymerization using the corresponding homogeneous catalyst system. The influence of propene concentration, polymerization medium, temperature, comonomer, and external aluminium alkyls on polymerization kinetics and polypropene properties such as molecular mass, stereo- and regioselectivity, morphology, and bulk density was studied. © 1997 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 1571-1578 
    ISSN: 0887-624X
    Keywords: half-sandwich metallocenes ; mono-Cp-amido complexes ; homogeneous catalysis ; ethene-styrene copolymers ; polymerization kinetics ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ethene was copolymerized with styrene using five different methylalumoxane (MAO) activated half-sandwich complexes of the general formula Me2Si(Cp)(N—R)MCl2, varying the substituents on the cyclopentadienyl ring and the substituent on the amide (Cp = tetramethylcyclopentadiene CBT, 1-indenyl IBT, 3-trimethylsilyl-1-indenyl SIBT, or fluorenyl FBZ, R = tert-butyl (complexes CBT, IBT, SIBT, FBZ) or benzyl CAT), as well as the metal center (M = Ti, except FBZ: M = Zr). Polymerization behavior was analyzed with respect to catalyst activity and polymerization kinetics, styrene incorporation, copolymer microstructure, and molecular weight. All complexes produced random poly(ethene-co-styrene) without any regioregular or stereoregular microstructure. Complex CBT showed the highest catalytic activity, the fluorenyl-substituted complex FBZ produced the highest molecular weight polymer, and complexes SIBT and CAT promoted high styrene incorporation. Cp-substitution pattern influenced deactivation of the catalytic system with bulky substituents of the Cp-ring slowing down deactivation at the expense of styrene incorporation. Moreover, deactivation was accelerated with increasing styrene concentration. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1571-1578, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1042-7147
    Keywords: Polypropylene ; Polyamide ; Blend ; Compatibilizer ; Ziegler-Natta catalysts ; Metallocene ; Maleic anhydride ; Graft copolymer ; Block copolymer ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Various anhydride-terminated isotactic and atactic oligopropenes of number average molecular weights ranging between 1,000 and 10,000 g/mole, prepared by maleinating vinylidene-terminated propene oligomers obtained with isospecific and nonstereospecific metallocene-based Ziegler-Natta catalysts, have been evaluated as blend compatibilizers of polypropylene/polyamide-6 (70 vol%/30 vol%) blends to study the role of blend compatibilizer molecular architecture. When added during processing, as shown by IR spectroscopic analysis, the anhydride-terminated oligopropenes react with the amine-terminated polyamide-6 to yield polypropylene-block-polyamide-6 in situ. Such block copolymers are efficient dispersing agents. While the polyamide dispersion in the polypropylene continuous phase is not affected by blend compatibilizer stereoregularities, both stiffness and yield stress as well as notched Charpy impact strength increase with increasing stereoregularities and molecular weights. With oligopropene molecular weights exceeding 1,150 g/mole, the average size of the dispersed polyamide microphases correlates with the volume fraction of the oligopropene-block-polyamide-6 blend compatibilizer and the dicarboxylic acid anhydride/amine molar ratio.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 4 (1993), S. 439-449 
    ISSN: 1042-7147
    Keywords: Block copolymer ; Propene oligomerization ; Polypropylene ; Macromonomer ; Polystyrene ; Polyamide ; Polymethylmethacrylate ; Polycaprolactone ; Ziegler-Natta catalysts ; Metallocene ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Metallocene-based homogeneous Ziegler-Natta catalysts produce mono-olefin-terminated oligopropenes with narrow molecular weight distributions, controlled stereoregularities, and molecular weights ranging from 100 to 30,000 g/mole in high yield slurry and solution processes. Steric and molecular weight control are influenced by metallocene structures, and by polymerization conditions such as temperature and propene concentration. Predominantly mono-vinylidene-terminated oligopropenes are attractive intermediates, and feedstock for the synthesis of a variety of polypropylene materials, including blends, block and graft copolymers. The key step is the chain end functionalization of the vinylideneterminated oligopropenes via double bond conversion reactions, followed by the controlled synthesis of polypropylene block and graft copolymers. In melt and solution processes the olefinic end groups have been converted into a variety of polar functional groups, e.g. hydroxy, carboxy, succinic anhydride, thiol and acrylic groups. The thiol-terminated oligopropenes are chain transfer agents in radical methylmethacrylate polymerization with chain transfer constant measured to be 0.2. Acrylic monomers and styrene are grown onto the thiol end group via a chain transfer reaction, thus producing a family of block copolymers, e.g. poly(propene-b-methylmethacrylate) and poly(propene-b-styrene). As demonstrated by SEM fracture surface analysis, the poly(propene-b-styrene) block copolymers are efficient dispersing agents for compatibilizing polystyrene/polypropene (70/30) blends. Homo- and copolymerization of acrylic oligopropene macromonomers yield novel classes of graft copolymers with pendant isotactic or atactic oligopropene chains. Hydroxy-terminated oligopropenes are useful initiators in caprolactone polymerization to form poly(propene-b-caprolactone) block copolymers. IR spectroscopic studies demonstrate that succinic anhydride-terminated oligopropenes, obtained by ene-type addition of maleic anhydride to the olefinic oligopropene end group, react with oligomeric diamine-terminated polyamide-6,6 in the melt to yield polypropene-b-polyamide-6,6-b-polypropene triblock copolymers.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 5 (1994), S. 282-286 
    ISSN: 1042-7147
    Keywords: Dispersion ; Microcomposite ; Polyamide ; Polyaramide ; Molecular composite ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: When N-(4-aminobenzoyl)-caprolactam (PAC) is injected into polymer melts, dispersions of anisotropic polyaramide particles with average diameters of 100-400 nm and aspect ratios of 5-10 are formed within few minutes. At 200°C PAC dispersion polymerization yields caprolactam and predominantly poly(p-phenylenebenzamide), whereas with increasing polymerization temperatures PAC ring-opening polymerization accounts for the incorporation of 6-aminocaproic acid units into the polyaramide backbone. Covalent bond formation between microparticle surfaces and functional groups of the matrix polymer provides excellent interfacial adhesion and stabilizes the anisotropic polyaramide microparticle dispersions. This in situ PAC dispersion polymerization during melt processing, producing polyaramide-whisker reinforced thermoplastics, represents a versatile route to organic microcomposites exhibiting improved stiffness and strength.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...