ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (3)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 3 (1965), S. 115-119 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Viscosity measurements and calculated rotary diffusion constants show that collagen undergoes photopolymerization when irradiated with ultraviolet light of 2537 A. Fibril formation at the same time is inhibited. The results are correlated with the aromatic amino acid content of the dangling peptides protruding from the rigid portion of the macromolecule.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 21 (1982), S. 79-88 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The aldehydes present in acid-soluble type I collagen react with pyrenebutyrylhydrazine to form various types of complexes under different reaction conditions. These complexes exhibit one or more of three different pyrene fluorescence bands: monomer, excimer, and aggregate fluorescence. Collagen, whose aldehydes have been reduced with NaBH4, does not react with this fluorescent hydrazine, confirming that the hydrazine reacts specifically with aldehyde groups to form hydrazones. The absence of a reaction with pepsin-treated collagen also shows that the fluorescent labels are primarily in the nonhelical terminal telopeptides. Upon dialysis, the pyrene label bound to a saturated aldehyde in an α-chain is lost; whereas that bound to an unsaturated aldehyde remains on the protein. The pyrene monomer fluorescence in the β-chain of old collagen is stronger than that of young collagen. The formation of the pyrene excimer fluorescence implies the proximity of two pyrene molecules, probably attached to two adjacent aldehydes. Upon changing from acidic to neutral pH, both excimer and aggregate fluorescence bands disappear within a few seconds, revealing a very rapid alteration at the telopeptides.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 19 (1980), S. 1081-1091 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Acid-soluble collagens isolated from young and old rat tail tendon were fluorescent-labeled with dansyl hydrazine, which is capable of reacting with aldehyde groups in collagen. The dansyl fluorescence of aged collagen exhibited a weak peak at 525 nm, whereas that of young collagen had a stronger broad peak at 500 nm. Fibril formation in vitro was partially inhibited in these dansylated collagens. During the turbidity lag phase, the dansyl fluorescence was found to increase (30-50%), also shifting to 485 nm. These changes reveal the telopeptide conformation changes occurring during this period. A new fluorescence peak at 420 nm also increased during fibril formation. When the dansylated collagen was irradiated in air with uv light (340 nm), a rapid decrease of the dansyl fluorescence with a concurrent shift to 490 nm occurred. Also, the formation of fibrils was further inhibited. With increasing temperature, the dansyl fluorescence of young collagen decreased, whereas that of old collagen substantially increased, particularly at the denaturation temperature around 38°C. After denaturation, both fluorescences became similar in their intensity and position (490 nm). These findings are discussed in connection with both age-related structural changes of collagen and the mechanism of fibril formation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...