ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Hypersensitivity ; Nicotiana ; o-Diphenols ; O-Methyltransferases ; Tobacco mosaic virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three distinct o-diphenol O-methyltransferases (OMTs) were found in leaves of Nicotiana tabacum, variety Samsun NN. They could be clearly distinguished by differences in elution pattern upon chromatography on DEAE-cellulose and in specificity towards 16 diphenolic substrates. The phenylpropanoids caffeic acid and 5-hydroxyferulic acid, whose importance as lignin precursors is well known, were the best substrates of OMT I, but they were also efficiently methylated by the two other OMTs that showed a broader substrate specificity. The highest rates of methylation were observed by assaying these latter enzymes with catechol, homocatechol and protocatechuic aldehyde. The flavonoid quercetin, the major o-diphenol of tobacco leaves, was a good substrate for OMTs II and III, but was also methylated significantly by OMT I. The tobacco OMTs showed both para-and meta-directing activities with protocatechuic acid, protocatechuic aldehyde and esculetin as substrates. Para-O-methylation of the former substrate arose almost exclusively from OMT I whereas that of the two latter substrates from all three enzymes. In healthy leaves the total O-methylating activity varied very much with the batch of plants whereas the relative contributions of the three enzymes were rather constant. On an average, OMTs I, II and III acounted towards caffeic acid, respectively. In tobacco mosaic virus-infected leaves carrying local necrotic lesions we found the same three OMTs with the same substrate specificities, but with increased activities. The degree of stimulation of both OMTs II and III was 2–3 times greater than that of OMT I when the leaves had a moderate number of lesions, and 3–5 times greater with large number of lesions. It is very likely that the changes in both the pattern of the O-methylating enzymes and the concentrations of the naturally occuring o-diphenolic substrates are related to an increased biosynthesis of lignins and of lignin-like compounds. These aromatic polymers could be involved in the cell wall thickening associated with the hypersensitive reaction and with the resistance to virus spread that occur in the cells surrounding the local lesions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Hypersensitivity ; Necrogenesis ; Nicotiana ; Phenylalanine ammonia-lyase ; Protoplasts ; Tobacco mosaic virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaves of tobacco varieties carrying the N gene for hypersensitiviy react to tobacco mosaic virus (TMV) infection by forming necrotic lesions and by localizing the virus in the vicinity of these lesions. These changes are accompanied in the host by an increased metabolic activity, in particular by an increased production of phenolic compounds derived from phenylalanine. Necrogenesis apparently destroys cells which have become heavily infected despite this strong defense reaction. However, it has been demonstrated previously (Otsuki et al., 1972) that protoplasts derived from leaves which normally respond in vivo to virus inoculation by forming necrotic local lesions, show no such response when inoculated in vitro. In the present study we have investigated the effect of pre-infecting hypersensitive leaves with TMV on the production or the non-production of the factor(s) of necrosis at the level of either protoplasts or mesophyll cells isolated from these preinfected leaves. Phenylalanine ammonia-lyase (PAL), whose rate of synthesis has been shown (Duchesne et al., 1977) to increase in stimulated cells of infected leaves, was used as a biochemical marker in the search for the stimulus preceding necrogenesis. We found that this stimulus concerning PAL activity was never elicited in either protoplasts or mesophyll cells which were prepared just before the appearance of necrotic local lesions. This result did not depend on the conditions of pre-infection or on the methods used to isolate the protoplasts or mesophyll cells. We also assayed samples derived from pre-infected leaves that were already carrying local lesions, i.e., in which the stimulus and necrogenesis were already operating: not only did the isolated protoplasts and mesophyll cells not sustain the stimulus concerning PAL activity, but the stimulated enzyme activity decreased abruptly and, in most of the experiments, had disappeared within the time necessary for maceration. Evidence is presented showing that the non-elicitation or the abrupt decrease of stimulated PAL activity could not result from a selection of unstimulated cells or from a preferential destruction of stimulated cells during maceration of the leaves. Our results support the view that hypertonic osmotic pressure is responsible for the non-occurence of the hypersensitive response by acting according to one or both of the following processes: it suppresses the contacts through plasmodesmata between neighboring cells and, hence, it also suppresses the cell-to-cell diffusion of the factor(s) eliciting the stimulus; and/or since hypertonic osmotic pressure causes striking differences between leaf cells and protoplasts in total RNA and protein synthesis, these differences might include the suppression of synthesis of the elicitor of hypersensitivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...