ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 1145-1151 
    ISSN: 1432-2242
    Keywords: Rice (Oryza sativa L.) ; Aroma/fragrance/ scent ; Grain quality ; Molecular mapping ; Segregation distortion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new approach was developed which succeeded in tagging for the first time a major gene and two QTLs controlling grain aroma in rice. It involved a combination of two techniques, quantification of volatile compounds in the cooking water by gas chromatography, and molecular marker mapping. Four types of molecular marker were used (RFLPs, RAPDs, STSs, isozymes). Evaluation and mapping were performed on a doubled haploid line population which (1) conferred a precise character evaluation by enabling the analysis of large quantities of grains per genotype and (2) made possible the comparison of gas chromatography results and sensitive tests. The population size (135 lines) provided a good mapping precision. Several markers on chromosome 8 were found to be closely linked to a major gene controlling the presence of 2-acetyl-1-pyrroline (AcPy), the main compound of rice aroma. Moreover, our results showed that AcPy concentration in plants is regulated by at least two chromosomal regions. Estimations of recombination fractions on chromosome 8 were corrected for strong segregation distortion. This study confirms that AcPy is the major component of aroma. Use of the markers linked to AcPy major gene and QTLs for marker-assisted selection by successive backcrosses may be envisaged.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 65-70 
    ISSN: 1432-2242
    Keywords: Molecular mapping ; Xanthomonasoryzae ; Resistance gene ; Marker-aided selection ; Oryza sativa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the most serious diseases of rice. The recessive gene xa-13 confers resistance to Philippine race 6 of Xoo. To tag xa-13 with molecular markers, RAPD analysis was conducted with the combined use of near-isogenic lines and bulked segregant analysis. From the survey of 260 arbitrary 10-nucleotide primers, one primer (OPAC05) was detected to amplify specifically a 0.9-kb band from the DNA of susceptible plants. The distance between the RAPD marker OPAC05-900 and xa-13 was estimated to be 5.3 cM. The RAPD marker was then mapped on chromosome 8 using a mapping population of doubled haploid lines derived from the cross of IR64/Azucena. The linkage between RFLP markers and the RAPD marker was analyzed using an F2 population of 135 plants derived from a cross between a near-isogenic line for xa-13, IR66699-5-5-4-2, and IR24. No recombinants were found between RZ28 and CDO116 and their distance from xa-13 was estimated to be 4.8 cM. RG136 was located at 3.7 cM on the other side of xa-13. The mapping of xa-13 with closely linked DNA markers provides the basis for marker-aided selection for rice improvement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 1145-1151 
    ISSN: 1432-2242
    Keywords: Key words Rice (Oryza sativa L.) ; Aroma/fragrance/ scent ; Grain quality ; Molecular mapping ; Segregation distortion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new approach was developed which succeeded in tagging for the first time a major gene and two QTLs controlling grain aroma in rice. It involved a combination of two techniques, quantification of volatile compounds in the cooking water by gas chromatography, and molecular marker mapping. Four types of molecular marker were used (RFLPs, RAPDs, STSs, isozymes). Evaluation and mapping were performed on a doubled haploid line population which (1) conferred a precise character evaluation by enabling the analysis of large quantities of grains per genotype and (2) made possible the comparison of gas chromatography results and sensitive tests. The population size (135 lines) provided a good mapping precision. Several markers on chromosome 8 were found to be closely linked to a major gene controlling the presence of 2-acetyl-1-pyrroline (AcPy), the main compound of rice aroma. Moreover, our results showed that AcPy concentration in plants is regulated by at least two chromosomal regions. Estimations of recombination fractions on chromosome 8 were corrected for strong segregation distortion. This study confirms that AcPy is the major component of aroma. Use of the markers linked to AcPy major gene and QTLs for marker-assisted selection by successive backcrosses may be envisaged.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...