ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-22
    Description: The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gendrel, Anne-Valerie -- Lippman, Zachary -- Yordan, Cristy -- Colot, Vincent -- Martienssen, Robert A -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1871-3. Epub 2002 Jun 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077425" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/chemistry/genetics/metabolism ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/metabolism ; DNA-Binding Proteins/*genetics/physiology ; Gene Expression ; Gene Expression Profiling ; Gene Silencing ; *Genes, Plant ; Heterochromatin/*metabolism ; Histones/chemistry/*metabolism ; Humans ; Lysine/metabolism ; Methylation ; Molecular Sequence Data ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-09
    Description: In the ovules of most sexual flowering plants female gametogenesis is initiated from a single surviving gametic cell, the functional megaspore, formed after meiosis of the somatically derived megaspore mother cell (MMC). Because some mutants and certain sexual species exhibit more than one MMC, and many others are able to form gametes without meiosis (by apomixis), it has been suggested that somatic cells in the ovule are competent to respond to a local signal likely to have an important function in determination. Here we show that the Arabidopsis protein ARGONAUTE 9 (AGO9) controls female gamete formation by restricting the specification of gametophyte precursors in a dosage-dependent, non-cell-autonomous manner. Mutations in AGO9 lead to the differentiation of multiple gametic cells that are able to initiate gametogenesis. The AGO9 protein is not expressed in the gamete lineage; instead, it is expressed in cytoplasmic foci of somatic companion cells. Mutations in SUPPRESSOR OF GENE SILENCING 3 and RNA-DEPENDENT RNA POLYMERASE 6 exhibit an identical defect to ago9 mutants, indicating that the movement of small RNA (sRNAs) silencing out of somatic companion cells is necessary for controlling the specification of gametic cells. AGO9 preferentially interacts with 24-nucleotide sRNAs derived from transposable elements (TEs), and its activity is necessary to silence TEs in female gametes and their accessory cells. Our results show that AGO9-dependent sRNA silencing is crucial to specify cell fate in the Arabidopsis ovule, and that epigenetic reprogramming in companion cells is necessary for sRNA-dependent silencing in plant gametes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olmedo-Monfil, Vianey -- Duran-Figueroa, Noe -- Arteaga-Vazquez, Mario -- Demesa-Arevalo, Edgar -- Autran, Daphne -- Grimanelli, Daniel -- Slotkin, R Keith -- Martienssen, Robert A -- Vielle-Calzada, Jean-Philippe -- R01 GM067014/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 25;464(7288):628-32. doi: 10.1038/nature08828. Epub 2010 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genomica para la Biodiversidad y Departamento de Ingenieria Genetica de Plantas, Cinvestav Irapuato CP36500 Guanajuato, Mexico.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20208518" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Argonaute Proteins ; DNA Transposable Elements/genetics ; Gametogenesis, Plant/*physiology ; Gene Expression Regulation, Plant ; Gene Silencing ; Meiosis ; Molecular Sequence Data ; Mutagenesis, Insertional/genetics ; Ovule/growth & development/*metabolism ; Phenotype ; RNA, Plant/*metabolism ; RNA-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-10
    Description: Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ong-Abdullah, Meilina -- Ordway, Jared M -- Jiang, Nan -- Ooi, Siew-Eng -- Kok, Sau-Yee -- Sarpan, Norashikin -- Azimi, Nuraziyan -- Hashim, Ahmad Tarmizi -- Ishak, Zamzuri -- Rosli, Samsul Kamal -- Malike, Fadila Ahmad -- Bakar, Nor Azwani Abu -- Marjuni, Marhalil -- Abdullah, Norziha -- Yaakub, Zulkifli -- Amiruddin, Mohd Din -- Nookiah, Rajanaidu -- Singh, Rajinder -- Low, Eng-Ti Leslie -- Chan, Kuang-Lim -- Azizi, Norazah -- Smith, Steven W -- Bacher, Blaire -- Budiman, Muhammad A -- Van Brunt, Andrew -- Wischmeyer, Corey -- Beil, Melissa -- Hogan, Michael -- Lakey, Nathan -- Lim, Chin-Ching -- Arulandoo, Xaviar -- Wong, Choo-Kien -- Choo, Chin-Nee -- Wong, Wei-Chee -- Kwan, Yen-Yen -- Alwee, Sharifah Shahrul Rabiah Syed -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):533-7. doi: 10.1038/nature15365. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ; Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ; United Plantations Berhad, Jendarata Estate, 36009 Teluk Intan, Perak, Malaysia. ; Applied Agricultural Resources Sdn Bhd, No. 11, Jalan Teknologi 3/6, Taman Sains Selangor 1, 47810 Kota Damansara, Petaling Jaya, Selangor, Malaysia. ; FELDA Global Ventures R&D Sdn Bhd, c/o FELDA Biotechnology Centre, PT 23417, Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia. ; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352475" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing/genetics ; Arecaceae/*genetics/metabolism ; *DNA Methylation ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Fruit/genetics ; Genes, Homeobox/genetics ; Genetic Association Studies ; Genome, Plant/*genetics ; Introns/genetics ; Molecular Sequence Data ; *Phenotype ; Plant Oils/analysis/metabolism ; RNA Splice Sites/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-06-11
    Description: In Schizosaccharomyces pombe, the RNA interference (RNAi) machinery converts pericentromeric transcripts into small interfering RNAs (siRNAs) and is required for the assembly of pericentromeric heterochromatin. Here we describe a mutation in the second largest subunit of RNA polymerase II (RNAPII). Both wild-type and mutant RNAPII localized to the pericentromere. However, the mutation resulted in the loss of heterochromatic histone modifications and in the accumulation of pericentromeric transcripts, accompanied by the loss of siRNAs. This phenotype resembles mutants in RNAi and suggests that RNAPII couples pericentromeric transcription with siRNA processing and heterochromatin assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Hiroaki -- Goto, Derek B -- Martienssen, Robert A -- Urano, Takeshi -- Furukawa, Koichi -- Murakami, Yota -- R01-GM067014/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):467-9. Epub 2005 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Centromere/metabolism ; Chromosome Segregation ; Gene Expression Regulation, Fungal ; Heterochromatin/*metabolism ; Histones/metabolism ; Methylation ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Point Mutation ; *RNA Interference ; RNA Polymerase II/chemistry/genetics/*metabolism ; RNA, Fungal/metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/*metabolism ; Schizosaccharomyces/enzymology/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-18
    Description: Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaratiegui, Mikel -- Castel, Stephane E -- Irvine, Danielle V -- Kloc, Anna -- Ren, Jie -- Li, Fei -- de Castro, Elisa -- Marin, Laura -- Chang, An-Yun -- Goto, Derek -- Cande, W Zacheus -- Antequera, Francisco -- Arcangioli, Benoit -- Martienssen, Robert A -- R01 GM076396/GM/NIGMS NIH HHS/ -- R01 GM076396-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Oct 16;479(7371):135-8. doi: 10.1038/nature10501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22002604" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/metabolism ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; DNA Damage ; DNA Replication/*physiology ; DNA-Directed DNA Polymerase/metabolism ; *Gene Silencing ; Heterochromatin/*genetics/*metabolism ; Histones/metabolism ; Homologous Recombination ; Models, Genetic ; Molecular Sequence Data ; *RNA Interference ; RNA Polymerase II/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Replication Origin ; S Phase ; Schizosaccharomyces/*genetics ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-26
    Description: A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Rajinder -- Low, Eng-Ti Leslie -- Ooi, Leslie Cheng-Li -- Ong-Abdullah, Meilina -- Ting, Ngoot-Chin -- Nagappan, Jayanthi -- Nookiah, Rajanaidu -- Amiruddin, Mohd Din -- Rosli, Rozana -- Manaf, Mohamad Arif Abdul -- Chan, Kuang-Lim -- Halim, Mohd Amin -- Azizi, Norazah -- Lakey, Nathan -- Smith, Steven W -- Budiman, Muhammad A -- Hogan, Michael -- Bacher, Blaire -- Van Brunt, Andrew -- Wang, Chunyan -- Ordway, Jared M -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 15;500(7462):340-4. doi: 10.1038/nature12356. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. raviga@mpob.gov.my〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/genetics ; Arecaceae/*genetics/*metabolism ; Chromosome Mapping ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant/*genetics ; Genetic Variation ; Homozygote ; MADS Domain Proteins/genetics ; Molecular Sequence Data ; Mutation ; *Plant Oils ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-26
    Description: Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929164/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929164/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Rajinder -- Ong-Abdullah, Meilina -- Low, Eng-Ti Leslie -- Manaf, Mohamad Arif Abdul -- Rosli, Rozana -- Nookiah, Rajanaidu -- Ooi, Leslie Cheng-Li -- Ooi, Siew-Eng -- Chan, Kuang-Lim -- Halim, Mohd Amin -- Azizi, Norazah -- Nagappan, Jayanthi -- Bacher, Blaire -- Lakey, Nathan -- Smith, Steven W -- He, Dong -- Hogan, Michael -- Budiman, Muhammad A -- Lee, Ernest K -- DeSalle, Rob -- Kudrna, David -- Goicoechea, Jose Luis -- Wing, Rod A -- Wilson, Richard K -- Fulton, Robert S -- Ordway, Jared M -- Martienssen, Robert A -- Sambanthamurthi, Ravigadevi -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 15;500(7462):335-9. doi: 10.1038/nature12309. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. raviga@mpob.gov.my〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883927" target="_blank"〉PubMed〈/a〉
    Keywords: Arecaceae/*classification/*genetics ; Carbohydrate Metabolism/genetics ; Chromosomes, Plant/genetics ; Genome, Plant/*genetics ; Lipid Metabolism/genetics ; Models, Genetic ; Molecular Sequence Data ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-05-12
    Description: Gene trap transposon mutagenesis can identify essential genes whose functions in later development are obscured by an early lethal phenotype. In higher plants, many genes are required for haploid gametophyte viability, so that the phenotypic effects of their disruption cannot be readily observed in the diploid plant body. The PROLIFERA (PRL) gene, identified by gene trap transposon mutagenesis in Arabidopsis, is required for megaga-metophyte and embryo development. Reporter gene expression patterns revealed that PRL was expressed in dividing cells throughout the plant. PRL is related to the MCM2-3-5 family of yeast genes that are required for the initiation of DNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, P S -- McCombie, W R -- Sundaresan, V -- Martienssen, R A -- New York, N.Y. -- Science. 1995 May 12;268(5212):877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7754372" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/growth & development/physiology ; *Arabidopsis Proteins ; Base Sequence ; Cell Cycle Proteins/genetics ; Crosses, Genetic ; DNA Transposable Elements ; Fungal Proteins/genetics ; *Genes, Plant ; Genes, Reporter ; Minichromosome Maintenance Complex Component 7 ; Molecular Sequence Data ; Mutagenesis, Insertional ; Phenotype ; Plant Proteins/chemistry/*genetics ; Seeds/growth & development ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-15
    Description: Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049228/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Yannick -- Bergamin, Elisa -- Donoghue, Mark T A -- Mongeon, Vanessa -- LeBlanc, Chantal -- Voigt, Philipp -- Underwood, Charles J -- Brunzelle, Joseph S -- Michaels, Scott D -- Reinberg, Danny -- Couture, Jean-Francois -- Martienssen, Robert A -- BMA-355900/Canadian Institutes of Health Research/Canada -- GM064844/GM/NIGMS NIH HHS/ -- GM067014/GM/NIGMS NIH HHS/ -- GM075060/GM/NIGMS NIH HHS/ -- R01 GM067014/GM/NIGMS NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- R37GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1249-53. doi: 10.1126/science.1248357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626927" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/*chemistry/metabolism ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; DNA Replication ; Epigenesis, Genetic ; Gene Expression Regulation, Plant ; Heterochromatin/*metabolism ; Histones/*metabolism ; Methylation ; Methyltransferases/*chemistry/metabolism ; Mitosis ; Molecular Sequence Data ; *Protein Processing, Post-Translational ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...