ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-02-14
    Description: For the past decade the immune system has been exploited as a rich source of de novo catalysts. Catalytic antibodies have been shown to have chemoselectivity, enantioselectivity, large rate accelerations, and even an ability to reroute chemical reactions. In many instances catalysts have been made for reactions for which there are no known natural or man-made enzymes. Yet, the full power of this combinatorial system can only be exploited if there was a system that allows for the direct selection of a particular function. A method that allows for the direct chemical selection for catalysis from antibody libraries was so devised, whereby the positive aspects of hybridoma technology were preserved and re-formatted in the filamentous phage system to allow direct selection of catalysis. This methodology is based on a purely chemical selection process, making it more general than biologically based selection systems because it is not limited to reaction products that perturb cellular machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Lo, L C -- Lo, C H -- Sim, M M -- Wang, R -- Wong, C H -- Lerner, R A -- GM-43858/GM/NIGMS NIH HHS/ -- GM-44154/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):945-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020070" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Catalytic/genetics/metabolism ; Catalysis ; Cloning, Molecular ; Coliphages ; Dithiothreitol ; Enzyme-Linked Immunosorbent Assay ; Escherichia coli/genetics/metabolism ; Galactosides/metabolism ; Haptens ; Hybridomas ; Immunoglobulin Fab Fragments/genetics/metabolism ; Indoles/metabolism ; Isopropyl Thiogalactoside/metabolism ; Mice ; Nitrophenylgalactosides/metabolism ; *Peptide Library ; Polymerase Chain Reaction ; Serum Albumin, Bovine ; Transformation, Bacterial ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-26
    Description: Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a gamma-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas gamma-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Rong -- Chadalavada, Kalyani -- Wilshire, Jennifer -- Kowalik, Urszula -- Hovinga, Koos E -- Geber, Adam -- Fligelman, Boris -- Leversha, Margaret -- Brennan, Cameron -- Tabar, Viviane -- England -- Nature. 2010 Dec 9;468(7325):829-33. doi: 10.1038/nature09624. Epub 2010 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21102433" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid Precursor Protein Secretases/antagonists & inhibitors ; Animals ; Antibodies, Monoclonal/pharmacology ; Antibodies, Monoclonal, Humanized ; Antigens, CD/metabolism ; Bevacizumab ; Cadherins/deficiency/metabolism ; *Cell Differentiation ; Cell Line, Tumor ; Cell Lineage ; Chromosome Aberrations ; Coculture Techniques ; Endothelial Cells/metabolism/*pathology ; Female ; Glioblastoma/*blood supply/genetics/*pathology ; Glycoproteins/metabolism ; Humans ; In Situ Hybridization, Fluorescence ; Integrin beta4/metabolism ; Male ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neovascularization, Pathologic/*pathology ; Neural Stem Cells/metabolism/*pathology ; Peptides/metabolism ; Receptor, Notch1/deficiency/genetics ; Vascular Endothelial Growth Factor A/antagonists & inhibitors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-15
    Description: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important alpha-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zehan -- Yan, Chuangye -- Liu, Peiyuan -- Huang, Zhiwei -- Ma, Rui -- Zhang, Chenlu -- Wang, Ruiyong -- Zhang, Yueteng -- Martinon, Fabio -- Miao, Di -- Deng, Haiteng -- Wang, Jiawei -- Chang, Junbiao -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765277" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Animals ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/*chemistry ; Calcium-Binding Proteins/*antagonists & inhibitors/*chemistry ; Crystallography, X-Ray ; Mice ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-02-21
    Description: Adult stem cells offer the potential to treat many diseases through a combination of ex vivo genetic manipulation and autologous transplantation. Mesenchymal stem cells (MSCs, also referred to as marrow stromal cells) are adult stem cells that can be isolated as proliferating, adherent cells from bones. MSCs can differentiate into multiple cell types present in several tissues, including bone, fat, cartilage, and muscle, making them ideal candidates for a variety of cell-based therapies. Here, we have used adeno-associated virus vectors to disrupt dominant-negative mutant COL1A1 collagen genes in MSCs from individuals with the brittle bone disorder osteogenesis imperfecta, demonstrating successful gene targeting in adult human stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamberlain, Joel R -- Schwarze, Ulrike -- Wang, Pei-Rong -- Hirata, Roli K -- Hankenson, Kurt D -- Pace, James M -- Underwood, Robert A -- Song, Kit M -- Sussman, Michael -- Byers, Peter H -- Russell, David W -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1198-201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976317" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Bone Marrow Cells/physiology ; Cell Differentiation ; Cells, Cultured ; Collagen Type I/chemistry/*genetics/metabolism ; Dependovirus/genetics ; *Gene Targeting ; Genetic Therapy ; Genetic Vectors ; Humans ; Kanamycin Kinase/genetics ; Male ; Mesenchymal Stromal Cells/*physiology ; Mice ; Osteogenesis ; Osteogenesis Imperfecta/*genetics/*therapy ; Point Mutation ; Recombination, Genetic ; Stem Cell Transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-12-06
    Description: The Rho family of small guanosine triphosphatases regulates actin cytoskeleton dynamics that underlie cellular functions such as cell shape changes, migration, and polarity. We found that Smurf1, a HECT domain E3 ubiquitin ligase, regulated cell polarity and protrusive activity and was required to maintain the transformed morphology and motility of a tumor cell. Atypical protein kinase C zeta (PKCzeta), an effector of the Cdc42/Rac1-PAR6 polarity complex, recruited Smurf1 to cellular protrusions, where it controlled the local level of RhoA. Smurf1 thus links the polarity complex to degradation of RhoA in lamellipodia and filopodia to prevent RhoA signaling during dynamic membrane movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong-Rui -- Zhang, Yue -- Ozdamar, Barish -- Ogunjimi, Abiodun A -- Alexandrova, Evguenia -- Thomsen, Gerald H -- Wrana, Jeffrey L -- HD32429/HD/NICHD NIH HHS/ -- R01 HD032429/HD/NICHD NIH HHS/ -- R01 HD032429-06/HD/NICHD NIH HHS/ -- R01 HD032429-07/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1775-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M56 1x5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism/physiology ; *Cell Movement ; *Cell Polarity ; Cell Size ; Cell Transformation, Neoplastic ; Cytoskeleton/ultrastructure ; Guanine Nucleotide Exchange Factors/metabolism ; Humans ; Intercellular Junctions/metabolism ; Mice ; NIH 3T3 Cells ; Protein Kinase C/metabolism ; Protein Structure, Tertiary ; Pseudopodia/*metabolism/ultrastructure ; RNA, Small Interfering ; Signal Transduction ; Transfection ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; cdc42 GTP-Binding Protein/metabolism ; rhoA GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-03-12
    Description: The transition of cells from an epithelial to a mesenchymal phenotype is a critical event during morphogenesis in multicellular organisms and underlies the pathology of many diseases, including the invasive phenotype associated with metastatic carcinomas. Transforming growth factor beta (TGFbeta) is a key regulator of epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms that control the dissolution of tight junctions, an early event in EMT, remain elusive. We demonstrate that Par6, a regulator of epithelial cell polarity and tight-junction assembly, interacts with TGFbeta receptors and is a substrate of the type II receptor, TbetaRII. Phosphorylation of Par6 is required for TGFbeta-dependent EMT in mammary gland epithelial cells and controls the interaction of Par6 with the E3 ubiquitin ligase Smurf1. Smurf1, in turn, targets the guanosine triphosphatase RhoA for degradation, thereby leading to a loss of tight junctions. These studies define how an extracellular cue signals to the polarity machinery to control epithelial cell morphology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozdamar, Barish -- Bose, Rohit -- Barrios-Rodiles, Miriam -- Wang, Hong-Rui -- Zhang, Yue -- Wrana, Jeffrey L -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1603-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761148" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Polarity ; DNA-Binding Proteins/metabolism ; Epithelial Cells/*cytology/*physiology ; Humans ; Mesoderm/cytology ; Mice ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Protein Kinase C-epsilon ; Protein-Serine-Threonine Kinases ; Proteins/genetics/*metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Smad2 Protein ; Tight Junctions/metabolism/ultrastructure ; Trans-Activators/metabolism ; Transforming Growth Factor beta/metabolism/pharmacology ; Ubiquitin-Protein Ligases/metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-25
    Description: Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749494/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749494/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Guangdong -- Wu, Lingyun -- Jiang, Bo -- Yang, Wei -- Qi, Jiansong -- Cao, Kun -- Meng, Qinghe -- Mustafa, Asif K -- Mu, Weitong -- Zhang, Shengming -- Snyder, Solomon H -- Wang, Rui -- DA00074/DA/NIDA NIH HHS/ -- K05 DA000074/DA/NIDA NIH HHS/ -- K05 DA000074-29/DA/NIDA NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- R37 MH018501/MH/NIMH NIH HHS/ -- R37 MH018501-40/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):587-90. doi: 10.1126/science.1162667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/metabolism ; *Blood Pressure ; Calcium/metabolism ; Calmodulin/metabolism ; Cystathionine gamma-Lyase/deficiency/genetics/*metabolism ; Cysteine/blood ; Endothelium, Vascular/metabolism ; Homocysteine/blood ; Hydrogen Sulfide/blood/*metabolism ; Hypertension/*physiopathology ; Mesenteric Arteries/physiology ; Methacholine Chloride/pharmacology ; Mice ; Mice, Knockout ; Myocardium/metabolism ; Oxidation-Reduction ; Sulfides/pharmacology ; *Vasodilation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-03
    Description: The ability of Anopheles gambiae mosquitoes to transmit Plasmodium parasites is highly variable between individuals. However, the genetic basis of this variability has remained unknown. We combined genome-wide mapping and reciprocal allele-specific RNA interference (rasRNAi) to identify the genomic locus that confers resistance to malaria parasites and demonstrated that polymorphisms in a single gene encoding the antiparasitic thioester-containing protein 1 (TEP1) explain a substantial part of the variability in parasite killing. The link between TEP1 alleles and resistance to malaria may offer new tools for controlling malaria transmission. The successful application of rasRNAi in Anopheles suggests that it could also be applied to other organisms where RNAi is feasible to dissect complex phenotypes to the level of individual quantitative trait alleles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blandin, Stephanie A -- Wang-Sattler, Rui -- Lamacchia, Marina -- Gagneur, Julien -- Lycett, Gareth -- Ning, Ye -- Levashina, Elena A -- Steinmetz, Lars M -- R01 GM068717/GM/NIGMS NIH HHS/ -- R01 GM068717-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):147-50. doi: 10.1126/science.1175241.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797663" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Anopheles gambiae/*genetics/immunology/metabolism/*parasitology ; Chromosome Mapping ; *Genes, Insect ; Genome, Insect ; Immunity, Innate ; Insect Proteins/*genetics/*metabolism ; Insect Vectors/genetics/immunology/metabolism/parasitology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Phenotype ; Plasmodium berghei/immunology/*physiology ; *Polymorphism, Genetic ; Quantitative Trait Loci ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-12
    Description: Asymmetric cell division, the partitioning of cellular components in response to polarizing cues during mitosis, has roles in differentiation and development. It is important for the self-renewal of fertilized zygotes in Caenorhabditis elegans and neuroblasts in Drosophila, and in the development of mammalian nervous and digestive systems. T lymphocytes, upon activation by antigen-presenting cells (APCs), can undergo asymmetric cell division, wherein the daughter cell proximal to the APC is more likely to differentiate into an effector-like T cell and the distal daughter is more likely to differentiate into a memory-like T cell. Upon activation and before cell division, expression of the transcription factor c-Myc drives metabolic reprogramming, necessary for the subsequent proliferative burst. Here we find that during the first division of an activated T cell in mice, c-Myc can sort asymmetrically. Asymmetric distribution of amino acid transporters, amino acid content, and activity of mammalian target of rapamycin complex 1 (mTORC1) is correlated with c-Myc expression, and both amino acids and mTORC1 activity sustain the differences in c-Myc expression in one daughter cell compared to the other. Asymmetric c-Myc levels in daughter T cells affect proliferation, metabolism, and differentiation, and these effects are altered by experimental manipulation of mTORC1 activity or c-Myc expression. Therefore, metabolic signalling pathways cooperate with transcription programs to maintain differential cell fates following asymmetric T-cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verbist, Katherine C -- Guy, Cliff S -- Milasta, Sandra -- Liedmann, Swantje -- Kaminski, Marcin M -- Wang, Ruoning -- Green, Douglas R -- R01 GM096208/GM/NIGMS NIH HHS/ -- R37 GM052735/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):389-93. doi: 10.1038/nature17442. Epub 2016 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27064903" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems/metabolism ; Amino Acids/metabolism ; Animals ; CD8-Positive T-Lymphocytes/*cytology/*metabolism ; Cell Differentiation/genetics ; *Cell Division ; *Cell Polarity/genetics ; Female ; *Lymphocyte Activation ; Male ; Mice ; Multiprotein Complexes/metabolism ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; Signal Transduction/genetics ; TOR Serine-Threonine Kinases/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-12
    Description: Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Stuart B -- Qu, Hui-Qi -- Taleb, Nadine -- Kishimoto, Nina Y -- Scheel, David W -- Lu, Yang -- Patch, Ann-Marie -- Grabs, Rosemary -- Wang, Juehu -- Lynn, Francis C -- Miyatsuka, Takeshi -- Mitchell, John -- Seerke, Rina -- Desir, Julie -- Vanden Eijnden, Serge -- Abramowicz, Marc -- Kacet, Nadine -- Weill, Jacques -- Renard, Marie-Eve -- Gentile, Mattia -- Hansen, Inger -- Dewar, Ken -- Hattersley, Andrew T -- Wang, Rennian -- Wilson, Maria E -- Johnson, Jeffrey D -- Polychronakos, Constantin -- German, Michael S -- P30 DK063720/DK/NIDDK NIH HHS/ -- P30 DK063720-045954/DK/NIDDK NIH HHS/ -- P30 DK063720-045955/DK/NIDDK NIH HHS/ -- P30 DK063720-045956/DK/NIDDK NIH HHS/ -- P30 DK063720-045957/DK/NIDDK NIH HHS/ -- P30 DK063720-045958/DK/NIDDK NIH HHS/ -- P30 DK063720-05/DK/NIDDK NIH HHS/ -- R01 DK021344/DK/NIDDK NIH HHS/ -- R01 DK021344-26/DK/NIDDK NIH HHS/ -- U19 DK061245/DK/NIDDK NIH HHS/ -- U19 DK061245-04/DK/NIDDK NIH HHS/ -- U19 DK061245-049001/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Feb 11;463(7282):775-80. doi: 10.1038/nature08748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Diabetes Center, University of California San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20148032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/deficiency/genetics/metabolism ; *Cell Differentiation ; DNA Mutational Analysis ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Diabetes Mellitus/congenital/genetics/metabolism/pathology ; Embryo, Mammalian/metabolism ; Female ; Fetus/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes, Recessive/genetics ; Genetic Testing ; Humans ; Infant, Newborn ; Insulin/*biosynthesis ; Islets of Langerhans/*cytology/embryology/*metabolism ; Male ; Mice ; NIH 3T3 Cells ; Nerve Tissue Proteins/deficiency/genetics/metabolism ; Organ Specificity ; Syndrome ; Transcription Factors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...