ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-30
    Description: The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota. A feature of human ulcerative colitis and other colitic diseases is a change in 'healthy' microbiota such as Bifidobacterium and Bacteriodes, and a concurrent reduction in SCFAs. Moreover, increased intake of fermentable dietary fibre, or SCFAs, seems to be clinically beneficial in the treatment of colitis. SCFAs bind the G-protein-coupled receptor 43 (GPR43, also known as FFAR2), and here we show that SCFA-GPR43 interactions profoundly affect inflammatory responses. Stimulation of GPR43 by SCFAs was necessary for the normal resolution of certain inflammatory responses, because GPR43-deficient (Gpr43(-/-)) mice showed exacerbated or unresolving inflammation in models of colitis, arthritis and asthma. This seemed to relate to increased production of inflammatory mediators by Gpr43(-/-) immune cells, and increased immune cell recruitment. Germ-free mice, which are devoid of bacteria and express little or no SCFAs, showed a similar dysregulation of certain inflammatory responses. GPR43 binding of SCFAs potentially provides a molecular link between diet, gastrointestinal bacterial metabolism, and immune and inflammatory responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256734/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256734/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maslowski, Kendle M -- Vieira, Angelica T -- Ng, Aylwin -- Kranich, Jan -- Sierro, Frederic -- Yu, Di -- Schilter, Heidi C -- Rolph, Michael S -- Mackay, Fabienne -- Artis, David -- Xavier, Ramnik J -- Teixeira, Mauro M -- Mackay, Charles R -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-14/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI061570-06/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI074878-02/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 HL088297/HL/NHLBI NIH HHS/ -- R01 HL088297-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Oct 29;461(7268):1282-6. doi: 10.1038/nature08530.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865172" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/therapeutic use ; Animals ; Arthritis/metabolism ; Cells, Cultured ; Chemotactic Factors/*metabolism ; Colitis/drug therapy/metabolism/microbiology ; Fatty Acids, Volatile/metabolism ; Germ-Free Life ; Humans ; Inflammation/drug therapy/*metabolism/*microbiology ; Intestines/*microbiology ; Metagenome ; Mice ; Mice, Inbred C57BL ; Neutrophils/metabolism ; Oligonucleotide Array Sequence Analysis ; Protein Array Analysis ; Receptors, G-Protein-Coupled/deficiency/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-23
    Description: Computational tools can markedly accelerate the rate at which murine genetic models can be analyzed. We developed a computational method for mapping phenotypic traits that vary among inbred strains onto haplotypic blocks. This method correctly predicted the genetic basis for strain-specific differences in several biologically important traits. It was also used to identify an allele-specific functional genomic element regulating H2-Ealpha gene expression. This functional element, which contained the binding sites for YY1 and a second transcription factor that is probably serum response factor, is located within the first intron of the H2-Ealpha gene. This computational method will greatly improve our ability to identify the genetic basis for a variety of phenotypic traits, ranging from qualitative trait information to quantitative gene expression data, which vary among inbred mouse strains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Guochun -- Wang, Jianmei -- Guo, Jingshu -- Allard, John -- Cheng, Janet -- Ng, Anh -- Shafer, Steve -- Puech, Anne -- McPherson, John D -- Foernzler, Dorothee -- Peltz, Gary -- Usuka, Jonathan -- 1 R01 HG02322-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):690-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genomics, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304-1397, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499019" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Binding Sites ; *Computational Biology ; Electrophoretic Mobility Shift Assay ; Gene Expression Profiling ; *Gene Expression Regulation ; Genes, MHC Class II ; Genetic Variation ; H-2 Antigens/*genetics ; Haplotypes ; Hydrocarbons, Aromatic/pharmacology ; Introns ; Liver/metabolism ; Lung/metabolism ; Major Histocompatibility Complex ; Mice ; Mice, Inbred Strains ; Oligodeoxyribonucleotides/metabolism ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Polymorphism, Single Nucleotide ; Receptors, Aryl Hydrocarbon/chemistry/genetics/metabolism ; Regulatory Sequences, Nucleic Acid ; Serum Response Factor/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-25
    Description: Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229641/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229641/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orvedahl, Anthony -- Sumpter, Rhea Jr -- Xiao, Guanghua -- Ng, Aylwin -- Zou, Zhongju -- Tang, Yi -- Narimatsu, Masahiro -- Gilpin, Christopher -- Sun, Qihua -- Roth, Michael -- Forst, Christian V -- Wrana, Jeffrey L -- Zhang, Ying E -- Luby-Phelps, Katherine -- Xavier, Ramnik J -- Xie, Yang -- Levine, Beth -- AI062773/AI/NIAID NIH HHS/ -- AI109617/AI/NIAID NIH HHS/ -- CA84254/CA/NCI NIH HHS/ -- DK043351/DK/NIDDK NIH HHS/ -- DK086502/DK/NIDDK NIH HHS/ -- DK83756/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-15/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI051367/AI/NIAID NIH HHS/ -- R01 AI051367-06/AI/NIAID NIH HHS/ -- UL1 RR024982/RR/NCRR NIH HHS/ -- ZIA BC011168-03/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Dec 1;480(7375):113-7. doi: 10.1038/nature10546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22020285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*genetics ; Capsid Proteins/metabolism ; *Genome-Wide Association Study ; HeLa Cells ; Humans ; Lysosomes/metabolism ; Mice ; Mitochondria/metabolism ; Protein Transport/genetics ; RNA, Small Interfering/*genetics ; Sindbis Virus/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-27
    Description: Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naive, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. beta-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242194/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242194/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeed, Sadia -- Quintin, Jessica -- Kerstens, Hindrik H D -- Rao, Nagesha A -- Aghajanirefah, Ali -- Matarese, Filomena -- Cheng, Shih-Chin -- Ratter, Jacqueline -- Berentsen, Kim -- van der Ent, Martijn A -- Sharifi, Nilofar -- Janssen-Megens, Eva M -- Ter Huurne, Menno -- Mandoli, Amit -- van Schaik, Tom -- Ng, Aylwin -- Burden, Frances -- Downes, Kate -- Frontini, Mattia -- Kumar, Vinod -- Giamarellos-Bourboulis, Evangelos J -- Ouwehand, Willem H -- van der Meer, Jos W M -- Joosten, Leo A B -- Wijmenga, Cisca -- Martens, Joost H A -- Xavier, Ramnik J -- Logie, Colin -- Netea, Mihai G -- Stunnenberg, Hendrik G -- P30 DK043351/DK/NIDDK NIH HHS/ -- RG/09/012/28096/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1251086. doi: 10.1126/science.1251086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. ; Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. ; Department of Haematology, University of Cambridge, Cambridge, UK. National Health Service, Blood and Transplant Cambridge Centre, Cambridge Biomedical Campus, Cambridge CB0 2PT, UK. ; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands. ; Fourth Department of Internal Medicine, University of Athens, Medical School, 1 Rimini Street, 12462 Athens, Greece. ; Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. h.stunnenberg@ncmls.ru.nl mihai.netea@radboudumc.nl c.logie@ncmls.ru.nl. ; Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. h.stunnenberg@ncmls.ru.nl mihai.netea@radboudumc.nl c.logie@ncmls.ru.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258085" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Cell Differentiation/*genetics ; Deoxyribonuclease I/chemistry ; *Epigenesis, Genetic ; Genomic Imprinting ; Humans ; Immunity, Innate/*genetics ; Immunologic Memory ; Inflammasomes/genetics/immunology ; Macrophages/*cytology/immunology ; Mice ; Monocytes/*cytology/immunology ; Transcription Factors/metabolism ; beta-Glucans/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-27
    Description: Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent beta-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1alpha (hypoxia-inducible factor-1alpha) pathway. Inhibition of Akt, mTOR, or HIF-1alpha blocked monocyte induction of trained immunity, whereas the adenosine monophosphate-activated protein kinase activator metformin inhibited the innate immune response to fungal infection. Mice with a myeloid cell-specific defect in HIF-1alpha were unable to mount trained immunity against bacterial sepsis. Our results indicate that induction of aerobic glycolysis through an Akt-mTOR-HIF-1alpha pathway represents the metabolic basis of trained immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Shih-Chin -- Quintin, Jessica -- Cramer, Robert A -- Shepardson, Kelly M -- Saeed, Sadia -- Kumar, Vinod -- Giamarellos-Bourboulis, Evangelos J -- Martens, Joost H A -- Rao, Nagesha Appukudige -- Aghajanirefah, Ali -- Manjeri, Ganesh R -- Li, Yang -- Ifrim, Daniela C -- Arts, Rob J W -- van der Veer, Brian M J W -- Deen, Peter M T -- Logie, Colin -- O'Neill, Luke A -- Willems, Peter -- van de Veerdonk, Frank L -- van der Meer, Jos W M -- Ng, Aylwin -- Joosten, Leo A B -- Wijmenga, Cisca -- Stunnenberg, Hendrik G -- Xavier, Ramnik J -- Netea, Mihai G -- 1P30GM106394-01/GM/NIGMS NIH HHS/ -- 5P30GM103415-03/GM/NIGMS NIH HHS/ -- DK097485/DK/NIDDK NIH HHS/ -- DK43351/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30 GM103415/GM/NIGMS NIH HHS/ -- P30 GM106394/GM/NIGMS NIH HHS/ -- R01 AI081838/AI/NIAID NIH HHS/ -- R01 DK097485/DK/NIDDK NIH HHS/ -- R01AI81838/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1250684. doi: 10.1126/science.1250684.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. ; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. ; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. ; 4th Department of Internal Medicine, University of Athens Medical School, 12462 Athens, Greece. ; Department of Biochemistry, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands. ; Department of Physiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. ; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. mihai.netea@radboudumc.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258083" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis/immunology ; Animals ; Candida albicans/immunology ; Candidiasis/immunology/metabolism ; Disease Models, Animal ; *Epigenesis, Genetic ; Female ; Glucose/metabolism ; Glycolysis/*immunology ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism ; Immunity, Innate/*genetics ; Immunologic Memory/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Monocytes/*immunology/metabolism ; Sepsis/genetics/immunology/metabolism ; Staphylococcal Infections/immunology/metabolism ; Staphylococcus aureus ; TOR Serine-Threonine Kinases/genetics/*metabolism ; Transcriptome ; beta-Glucans/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...