ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: The atmospheric moisture and temperature profiles from the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit on the NASA Aqua mission, in combination with the precipitation from the Tropical Rainfall Measuring Mission (TRMM), are employed to study the vertical moist thermodynamic structure and spatial-temporal evolution of the Madden-Julian oscillation (MJO). The AIRS data indicate that, in the Indian Ocean and western Pacific, the temperature anomaly exhibits a trimodal vertical structure: a warm (cold) anomaly in the free troposphere (800-250 hPa) and a cold (warm) anomaly near the tropopause (above 250 hPa) and in the lower troposphere (below 800 hPa) associated with enhanced (suppressed) convection. The AIRS moisture anomaly also shows markedly different vertical structures as a function of longitude and the strength of convection anomaly. Most significantly, the AIRS data demonstrate that, over the Indian Ocean and western Pacific, the enhanced (suppressed) convection is generally preceded in both time and space by a low-level warm and moist (cold and dry) anomaly and followed by a low-level cold and dry (warm and moist) anomaly. The MJO vertical moist thermodynamic structure from the AIRS data is in general agreement, particularly in the free troposphere, with previous studies based on global reanalysis and limited radiosonde data. However, major differences in the lower-troposphere moisture and temperature structure between the AIRS observations and the NCEP reanalysis are found over the Indian and Pacific Oceans, where there are very few conventional data to constrain the reanalysis. Specifically, the anomalous lower-troposphere temperature structure is much less well defined in NCEP than in AIRS for the western Pacific, and even has the opposite sign anomalies compared to AIRS relative to the wet/dry phase of the MJO in the Indian Ocean. Moreover, there are well-defined eastward-tilting variations of moisture with height in AIRS over the central and eastern Pacific that are less well defined, and in some cases absent, in NCEP. In addition, the correlation between MJO-related mid-tropospheric water vapor anomalies and TRMM precipitation anomalies is considerably more robust in AIRS than in NCEP, especially over the Indian Ocean. Overall, the AIRS results are quite consistent with those predicted by the frictional Kelvin-Rossby wave/conditional instability of the second kind (CISK) theory for the MJO.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 63; Issue 10; 2462-2485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-03
    Description: Data from hyperspectral infrared sounders are routinely ingested worldwide by National Weather Centers (NWCs). The cloud-free fraction of this data is used for initializing forecasts which include profiles of temperature, water vapor, water cloud and ice cloud profiles on a global grid. Although the data from these sounders are sensitive to the vertical distribution of ice and liquid water in clouds, this information is not fully utilized. In the future, this information could be used for validating clouds in NWC models and for initializing forecasts. We evaluate how well the calculated radiances from hyperspectral Radiative Transfer Models (RTMs) compare to cloudy radiances observed by AIRS and to one another. Vertical profiles of the clouds, temperature and water vapor from ECMWF (European Center for Medium-range Weather Forecasting) were used as input for the RTMs. For non-frozen ocean day and night data, the histograms derived from the calculations by several RTMs at 900 cm(exp -1)have a better than 0.95 correlation with the histogram derived from the AIRS observations, with a bias relative to AIRS of typically less than 2 K. Differences in the cloud physics and cloud overlap assumptions result in little bias between the RTMs, but the standard deviation of the differences ranges from 6 to 12 K. Results at 2616 cm(exp -1) at night are reasonably consistent with results at 900 cm(exp -1). Except for RTMs which use full scattering calculations, the bias and histogram correlations at 2616 cm(exp -1) are inferior to those at 900 cm(exp -1) for daytime calculations.
    Keywords: Meteorology and Climatology
    Type: NF1676L-29583 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 11; 6142-6157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August 2002. The interannual variability (IAV) of extratropical O-3 in the Northern Hemisphere (NH) is characterized by four main modes. Attributable to dominant dynamical effects, these four modes account for nearly 60% of the total ozone variance in the NH. The patterns of variability are distinctly different from those derived for total O-3 in the tropics. To relate the derived patterns of O-3 to atmospheric dynamics, similar decompositions are performed for the 30 100-Wa geopotential thickness. The results reveal intimate connections between the IAV of total ozone and the atmospheric circulation. The first two leading modes are nearly zonally symmetric and represent the connections to the annular modes and the quasi-biennial oscillation. The other two modes exhibit in-quadrature, wavenumber-1 structures that, when combined, describe the displacement of the polar vortices in response to planetary waves. In the NH, the extrema of these combined modes have preferred locations that suggest fixed topographical and land-sea thermal forcing of the involved planetary waves. Similar spatial patterns and trends in extratropical column ozone are simulated by the Goddard Earth Observation System chemistryclimate model (GEOS-CCM). The decreasing O-3 trend is captured in the first mode. The largest trend occurs at the North Pole, with values similar to-1 Dobson Unit (DU) yr(-1). There is almost no trend in tropical O-3. The trends derived from PCA are confirmed using a completely independent method, empirical mode decomposition, for zonally averaged O-3 data. The O-3 trend is also captured by mode 1 in the GEOS-CCM, but the decrease is substantially larger than that in the real atmosphere.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; 65; 10; 3013-3029
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We investigate the possibility that solar variability influences North African climate by using annual records of the water level of the Nile collected in 622-1470 A.D. The time series of these records are nonstationary, in that the amplitudes and frequencies of the quasi-periodic variations are time-dependent. We apply the Empirical Mode Decomposition technique especially designed to deal with such time series. We identify two characteristic timescales in the records that may be linked to solar variability: a period of about 88 years and one exceeding 200 years. We show that these timescales are present in the number of auroras reported per decade in the Northern Hemisphere at the same time. The 11-year cycle is seen in the Nile's high-water level variations, but it is damped in the low-water anomalies. We suggest a possible physical link between solar variability and the low-frequency variations of the Nile water level. This link involves the influence of solar variability on the atmospheric Northern Annual Mode and on its North Atlantic Ocean and Indian Ocean patterns that affect the rainfall over the sources of the Nile in eastern equatorial Africa.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: One of the most controversial aspects of climate studies is the debate over the natural and anthropogenic causes of climate change. Historical data strongly suggest that the Little Ice Age (from 1550 to 1850 AD when the mean temperature was colder by about 1 C) was most likely caused by variability of the sun and not greenhouse molecules (e.g., CO2). However, the known variability in solar irradiance and modulation of cosmic rays provides too little energy, by many orders of magnitude, to lead to climate changes in the troposphere. The conjecture is that there is a 'trigger mechanism'. This idea may now be subjected to a quantitative test using recent global datasets. Using the best available modern cloud data from International Satellite Cloud Climatology Project (ISCCP), Svensmark and Friis-Christensen found a correlation of a large variation (3-4%) in global cloud cover with the solar cycle. The work has been extended by Svensmark and Marsh and Svensmark. The implied forcing on climate is an order of magnitude greater than any previous claims. Are clouds the long sought trigger mechanism? This discovery is potentially so important that it should be corroborated by an independent database, and, furthermore, it must be shown that alternative explanations (i.e., El Nino) can be ruled out. We used the ISCCP data in conjunction with the Total Ozone Mapping Spectrometer (TOMS) data to carry out in in depth study of the cloud trigger mechanism.
    Keywords: Meteorology and Climatology
    Type: CIT-YLY.64556-1-NASA.645560
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The mechanism we wish to demonstrate exploits chemical, radiative, and dynamical sensitivities in the stratosphere to affect the climate of the troposphere. The sun, while its variability in total radiative output over the course of the solar cycle is on the order of 0.1%, exhibits variability in the UV output on the order of 5%. We expect to show that a substantially decreased solar UV output lessened the heating of the Earth's stratosphere during the Maunder Minimum, through decreased radiative absorption by ozone and oxygen. These changes in stratospheric heating would lead to major changes in the stratospheric zonal wind pattern which would in turn affect the propagation characteristics of planetary-scale waves launched in the winter hemisphere. Until recently, there was no quantitative data to relate the changes in the stratosphere to those at the surface. There is now empirical evidence from the NCEP Reanalysis data that a definitive effect of the solar cycle on climate in the troposphere exists. Our recent work is summarized as follows (see complete list of publications in later part of this report).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...