ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (9)
Collection
Keywords
Years
  • 1
    Publication Date: 2004-12-03
    Description: We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 527-529; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
    Keywords: Meteorology and Climatology
    Type: International Conference on Atmospheric Electricity ICAE 2003; Jun 09, 2003 - Jun 13, 2003; Versailles; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
    Keywords: Meteorology and Climatology
    Type: 12th International Conference on Atmospheric Electricity; Jun 09, 2003 - Jun 14, 2003; Versailles; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approx.1 to 〉10 kV/m even though the particle concentrations and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was 〈3 kV/m. Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
    Keywords: Meteorology and Climatology
    Type: KSC-2006-169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Ascending space vehicles are vulnerable to both natural and triggered lightning. Launches under the jurisdiction of the United States are generally subject to a set of rules called the Lightning Launch Commit Criteria (LLCC). The LLCC protect both the vehicle and the public by assuring that the launch does not take place in conditions posing a significant risk of a lightning strike to the ascending vehicle. Such a strike could destroy the vehicle and its payload, thus causing failure of the mission while releasing both toxic materials and debris. To assure safety, the LLCC are conservative and sometimes they may seriously limit the ability of the launch operator to fly as scheduled even when conditions are benign. In order to safely reduce the number of launch scrubs and delays attributable to the LLCC, the Airborne Field Mill (ABFM) program was undertaken in 2000 - 2001. The effort was directed to collecting detailed high-quality data on the electrical, microphysical, radar and meteorological properties of thunderstorm-associated clouds. The expectation was that this additional knowledge would provide a better physical basis for the LLCC and allow them to be revised to be both safer and less restrictive. That expectation was fulfilled, leading to significant revisions to the LLCC in 2003 and 2005. The 2005 revisions included the application of a new radar-derived quantity called the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) in the rules governing flight through anvil clouds. Analysis of the ABFM data has continued, and two additional revisions to the LLCC were proposed in late 2006 for adoption in 2007 or 2008. One proposal was to apply the VAHIRR concept to debris clouds, and the other was to reduce the "stand-off distances" in the rules for anvil and/or debris clouds. The stand-off distance is the clearance (out side of the cloud) required between the flight path of the vehicle and the edge of a cloud that it is not permissible to fly through. This paper will discuss these proposed changes in the LLCC and the scientific rationale for adopting or rejecting them based on ABFM data.
    Keywords: Meteorology and Climatology
    Type: KSC-2007-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The Lightning Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical lightning data since November 1997. A Lightning Mapping Array (LMA) that senses VHF impulses from lightning was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into lightning flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global Lightning Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.
    Keywords: Meteorology and Climatology
    Type: 88th American Meteorological Society Annual Meeting; Jan 20, 2008 - Jan 24, 2008; New Orleans, LA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The Lagrange multiplier theory and "pitch down method" developed in Part I of this study are applied to complete the calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the method performs well in computer simulations. For mill measurement errors of 1 V/m and a 5 V/m error in the mean fair weather field function, the 3-D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair weather field was also tested using computer simulations. For mill measurement errors of 1 V/m, the method retrieves the 3-D storm field to within an error of about 8% if the fair weather field estimate is typically within 1 V/m of the true fair weather field. Using this side constraint and data from fair weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. The resulting calibration matrix was then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably with the results obtained from earlier calibration analyses that were based on iterative techniques.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX- 3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements will be shown. Our new mills have an internal 16-bit A/D, with a resolution of 0.25 V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Electricity; Jun 07, 1999 - Jun 11, 1999; Guntersville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approximately 1 to more than 10 kV m(exp -1) even though the particle concentration and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was les than kV m(exp -1). Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...