ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.
    Keywords: Meteorology and Climatology
    Type: Science; Volume 267; 496-499
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Cloud macrophysical properties like fractional coverage and height Z(sub c) and microphysical parameters such as cloud liquid water path (LWP), effective droplet radius r(sub e), and cloud phase, are key factors affecting both the radiation budget and the hydrological cycle. Satellite data have been used to complement surface observations from Atmospheric Radiation Measurements (ARM) by providing additional spatial coverage and top-of-atmosphere boundary conditions of these key parameters. Since 1994, the Geostationary Operational Environmental Satellite (GOES) has been used for deriving at each half-hour over the ARM Southern Great Plains (SGP) domain: cloud amounts, altitudes, temperatures, and optical depths as well as broadband shortwave (SW) albedo and outgoing longwave radiation at the top of the atmosphere. A new operational algorithm has been implemented to increase the number of value-added products to include cloud particle phase and effective size (r(sub e) or effective ice diameter D(sub e)) as well as LWP and ice water path. Similar analyses have been performed on the data from the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission satellite as part of the Clouds and Earth's Radiant Energy System project. This larger suite of cloud properties will enhance our knowledge of cloud processes and further constrain the mesoscale and single column models using ARM data as a validation/initialization resource. This paper presents the results of applying this new algorithm to GOES-8 data taken during 1998 and 2000. The global VIRS results are compared to the GOES SGP results to provide appropriate context and to test consistency.
    Keywords: Meteorology and Climatology
    Type: 11th ARM Science Team Meeting; Mar 19, 2001 - Mar 23, 2001; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Highly accurate measurements of Earth's thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. We consider the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission such as the Climate Absolute Radiance and Refractivity Observatory. In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of year-long simulations of orbital motion. We conclude that the International Space Station orbit is ideally suited for the purpose of intercalibration.
    Keywords: Meteorology and Climatology
    Type: NF1676L-14122 , 1st Annual (ISS) International Space Station Research and Development Conference; Jun 26, 2012 - Jun 28, 2012; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Plasma outflows, escaping from Earth through the high-altitude polar caps into the tail of the magnetosphere, have been observed with a xenon plasma source instrument to reduce the floating potential of the POLAR spacecraft. The largest component of H(+) flow, along the local magnetic field (30 to 60 kilometers per second), is faster than predicted by theory. The flows contain more O(+) than predicted by theories of thermal polar wind, but also have elevated ion temperatures. These plasma outflows contribute to the plasmas energized in the elongated nightside tail of the magnetosphere, creating auroras, substorms, and storms. They also constitute an appreciable loss of terrestrial water dissociation products into space.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-207737 , NAS 1.26:207737 , Science; 277; 349-351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth s Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper evaluates the accuracy of CERES TOA fluxes obtained from a new set of ADMs developed for the CERES instrument onboard the Tropical Rainfall Measuring Mission (TRMM). The uncertainty in regional monthly mean reflected shortwave (SW) and emitted longwave (LW) TOA fluxes is less than 0.5 W/sq m, based on comparisons with TOA fluxes evaluated by direct integration of the measured radiances. When stratified by viewing geometry, TOA fluxes from different angles are consistent to within 2% in the SW and 0.7% (or 2 W/sq m) in the LW. In contrast, TOA fluxes based on ADMs from the Earth Radiation Budget Experiment (ERBE) applied to the same CERES radiance measurements show a 10% relative increase with viewing zenith angle in the SW and a 3.5% (9 W/sq m) decrease with viewing zenith angle in the LW. Based on multiangle CERES radiance measurements, 18 regional instantaneous TOA flux errors from the new CERES ADMs are estimated to be 10 W/sq m in the SW and, 3.5 W/sq m in the LW. The errors show little or no dependence on cloud phase, cloud optical depth, and cloud infrared emissivity. An analysis of cloud radiative forcing (CRF) sensitivity to differences between ERBE and CERES TRMM ADMs, scene identification, and directional models of albedo as a function of solar zenith angle shows that ADM and clear-sky scene identification differences can lead to an 8 W/sq m root-mean-square (rms) difference in 18 daily mean SW CRF and a 4 W/sq m rms difference in LW CRF. In contrast, monthly mean SW and LW CRF differences reach 3 W/sq m. CRF is found to be relatively insensitive to differences between the ERBE and CERES TRMM directional models.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; 42; 1748-1769
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...