ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (8)
  • Space Sciences (General)  (1)
  • 1
    Publication Date: 2018-06-06
    Description: A new type of EI Nino event has been identified in the last decade. During "warm pool" EI Nino (WPEN) events, sea surface temperatures (SSTs) in the central equatorial Pacific are warmer than average. The EI Nino signal propagates poleward and upward as large-scale atmospheric waves, causing unusual weather patterns and warming the polar stratosphere. In austral summer, observations show that the Antarctic lower stratosphere is several degrees (K) warmer during WPEN events than during the neutral phase of EI Nino/Southern Oscillation (ENSO). Furthermore, the stratospheric response to WPEN events depends of the direction of tropical stratospheric winds: the Antarctic warming is largest when WPEN events are coincident with westward winds in the tropical lower and middle stratosphere i.e., the westward phase of the quasi-biennial oscillation (QBO). Westward winds are associated with enhanced convection in the subtropics, and with increased poleward wave activity. In this paper, a new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) is used to substantiate the observed stratospheric response to WPEN events. One simulation is driven by SSTs typical of a WPEN event, while another simulation is driven by ENSO neutral SSTs; both represent a present-day climate. Differences between the two simulations can be directly attributed to the anomalous WPEN SSTs. During WPEN events, relative to ENSO neutral, the model simulates the observed increase in poleward planetary wave activity in the South Pacific during austral spring, as well as the relative warming of the Antarctic lower stratosphere in austral summer. However, the modeled response to WPEN does not depend on the phase of the QBO. The modeled tropical wind oscillation does not extend far enough into the lower stratosphere and upper troposphere, likely explaining the model's insensitivity to the phase of the QBO during WPEN events.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.
    Keywords: Meteorology and Climatology
    Type: SPARC 4th General Assembly; Aug 31, 2008 - Sep 05, 2008; Bologna; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: We have carried out an experiment with the finite volume general circulation model (FVGCM). This experiment consisted of two different imposed changes in the climatological ozone fields assumed in the radiation code. for conditions with no significant ozone hole. This distribution was obtained from a 50-year simulation of the full stratospheric ozone chemistry, with a time-dependent chlorine loading, done with our off-line chemical transport model (CTM). Three years (1978-1980) of this simulation were averaged to form a monthly, zonal-mean ozone distribution that was used in the 20-year integration of the FVGCM for "unperturbed" conditions. The second 20-year GCM integration included a fully-developed ozone hole. This ozone distribution was from three years, 1998-2000, from the same CTM simulation. The goal of this work is to determine the coupled response of the chemistry and dynamics of the stratosphere. These experiments are the first step in understanding the coupled response. An important initial question concerns the significance of the signals: if 20-year integrations turn out to be too short, the runs will be extended.
    Keywords: Meteorology and Climatology
    Type: SPARC 3rd General Assembly; Jul 31, 2004 - Aug 09, 2004; Victoria; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average area coverage during this September-October period. Profile information shows that ozone is completely destroyed in the 14-2 1 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international a'greements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We estimate that the ozone hole will begin to show first signs of size decrease in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. Estimates of the ozone hole's recovery from models reveal important differences that will be discussed.
    Keywords: Space Sciences (General)
    Type: Symposium for the 20th Anniversary of the Montreal Protocol; Sep 23, 2007 - Sep 26, 2007; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.01154.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The simulation of major midwinter stratospheric sudden warmings (SSWs) in six stratosphere-resolving general circulation models (GCMs) is examined. The GCMs are compared to a new climatology of SSWs, based on the dynamical characteristics of the events. First, the number, type, and temporal distribution of SSW events are evaluated. Most of the models show a lower frequency of SSW events than the climatology, which has a mean frequency of 6.0 SSWs per decade. Statistical tests show that three of the six models produce significantly fewer SSWs than the climatology, between 1.0 and 2.6 SSWs per decade. Second, four process-based diagnostics are calculated for all of the SSW events in each model. It is found that SSWs in the GCMs compare favorably with dynamical benchmarks for SSW established in the first part of the study. These results indicate that GCMs are capable of quite accurately simulating the dynamics required to produce SSWs, but with lower frequency than the climatology. Further dynamical diagnostics hint that, in at least one case, this is due to a lack of meridional heat flux in the lower stratosphere. Even though the SSWs simulated by most GCMs are dynamically realistic when compared to the NCEP-NCAR reanalysis, the reasons for the relative paucity of SSWs in GCMs remains an important and open question.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate; 20; 3; 470-488
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.
    Keywords: Meteorology and Climatology
    Type: AMS Middle Atmosphere Meeting; Jun 13, 2005 - Jun 17, 2005; Cambridge, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Data assimilation is a potentially powerful method of extracting the maximum amount of information from observed data by combining their information with models. in this application, we will use stratospheric ozone profiles retrieved from EOS MLS and total column amounts retrieved from OMI' along with the GEOS-5 GCM, that includes a representation of ozone chemistry and transport. The presentation will discuss how well we can derive tropospheric ozone column information in this system, including its sensitivity to model errors and some assumptions made in the assimilation system. We discuss also ozone structures in the tropopause region and their sensitivity to model resolution and other fact=ors. An important issue we examine is how much more information we obtain from ozone assimilation than from model studies using state of the art chemistry models - answering such questions helps determine how useful ozone assimilation really is, given our present capabilities in chemical modeling.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...