ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (3)
Collection
Keywords
  • Lunar and Planetary Science and Exploration  (3)
Years
  • 1
    Publication Date: 2019-07-13
    Description: A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN10014 , Journal of Geophysical Research: Planets; 118; 10; 1955–1973
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN8873
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that 〈550degC evolved NO is produced via reaction of HCl with nitrates arising from the decomposition of perchlorates. All sources of m/z 30 whether it be martian or terrestrial will be considered and their implications for Mars will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30040 , American Geophysical Union (AGU) Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...