ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (30)
Collection
Keywords
  • 1
    Publication Date: 2019-07-17
    Description: We present a new algorithm for extracting TiO2 concentrations from Clementine UVVIS data, which accounts for soil darkness and UV/VIS ratio. The accuracy of these TiO2 estimates are examined with Lunar Prospector thermal/epithermal neutron flux data. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of small bodies originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to low-albedo, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison with known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. Multiple flybys suffice.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN29370 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of asteroids originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to dark, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison to known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35256 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN8081 , Lunar and Planetary Science Conference (LPSC) 2013; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Design Reference Mission (DRM) evaluations were performed for The Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction (RESOLVE) project to determine future flight mission feasibility and understand potential mission environment impacts on hardware requirements, science/resource assessment objectives, and mission planning. DRM version 2.2 (DRM 2.2) is presented for a notional flight of the RESOLVE payload for lunar resource ground truth and utilization (Figure 1) [1]. The rover/payload deploys on a 10 day surface mission to the Cabeus crater near the lunar south pole in May of 2016. A drill, four primary science instruments, and a high temperature chemical reactor will acquire and characterize water and other volatiles in the near sub-surface, and perform demonstrations of In-Situ Re-source Utilization (ISRU). DRM 2.2 is a reference point, and will be periodically revised to accommodate and incorporate changes to project approach or implementation, and to explore mission alternatives such as landing site or opportunity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25932 , 43rd Lunar and Planetary Science Confernece; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: We know that volatiles are sequestered at the poles of the Moon. While we have evidence of water ice and a number of other compounds based on remote sensing, the detailed distribution, and physical and chemical form are largely unknown. Additional orbital studies of lunar polar volatiles may yield further insights, but the most important next step is to use landed assets to fully characterize the volatile composition and distribution at scales of tens to hundreds of meters. To achieve this range of scales, mobility is needed. Because of the proximity of the Moon, near real-time operation of the surface assets is possible, with an associated reduction in risk and cost. This concept of operations is very different from that of rovers on Mars, and new operational approaches are required to carry out such real-time robotic exploration. The Mojave Volatiles Project (MVP) was a Moon-Mars Analog Mission Activities (MMAMA) program project aimed at (1) determining effective approaches to operating a real-time but short-duration lunar surface robotic mission, and (2) performing prospecting science in a natural setting, as a test of these approaches. Here we describe some results from the first such test, carried out in the Mojave Desert between 16 and 24 October, 2014. The test site was an alluvial fan just E of the Soda Mountains, SW of Baker, California. This site contains desert pavements, ranging from the late Pleistocene to early-Holocene in age. These pavements are undergoing dissection by the ongoing development of washes. A principal objective was to determine the hydration state of different types of desert pavement and bare ground features. The mobility element of the test was provided by the KREX-2 rover, designed and operated by the Intelligent Robotics Group at NASA Ames Research Center. The rover-borne neutron spectrometer measured the neutron albedo at both thermal and epithermal energies. Assuming uniform geochemistry and material bulk density, hydrogen as either hydroxyl/water in mineral assemblages or as moisture will significantly enhance the return of thermalized neutrons. However, in the Mojave test setting there is little uniformity, especially in bulk material density. We find that lighter toned materials (immature pavements, bar and swale, and wash materials) have lower thermal neutron flux, while mature, darker pavements with the greatest desert varnish development have higher neutron fluxes. Preliminary analysis of samples from the various terrain types in the test area indicates a prevailing moisture content of 2-3 wt% H2O. However, soil mineralogy suggests that the welldeveloped Av1 soil horizon beneath the topmost dark pavement clast layer contains the highest clay content. Structural water (including hydroxyl) in these clays may explain the enhanced neutron albedo over dark pavements. On the other hand, surface and subsurface bulk density can also play a role in neutron albedo - lower density of materials found in washes, for example, can result in a reduction in neutron flux. Analysis is ongoing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN22962 , NASA Exploration Science Forum; Jul 21, 2015 - Jul 23, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Inner Planets Panel of the Planetary Exploration Decadal Survey defined several science questions related to the origins, emplacement, and sequestration of lunar polar volatiles: 1. What is the lateral and vertical distribution of the volatile deposits? 2. What is the chemical composition and variability of polar volatiles? 3. What is the isotopic composition of the volatiles? 4. What is the physical form of the volatiles? 5. What is the rate of the current volatile deposition? A mission concept study, the Lunar Polar Volatiles Explorer (LPVE), defined a approximately $1B New Frontiers mission to address these questions. The NAS/NRC report, 'Scientific Context for the Exploration of the Moon' identified he lunar poles as special environments with important implications. It put forth the following goals: Science Goal 4a-Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. Science Goal 4b-Determine the source(s) for lunar polar volatiles. Science Goal 4c-Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. Science Goal 4d-Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. Science Goal 4e-Determine what the cold polar regolith reveals about the ancient solar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN46000 , Annual Meeting of the Lunar Exploration Analysis Group (LEAG 2017); Oct 10, 2017 - Oct 12, 2017; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN39732 , Lunar and Planetary Science Conference 2017; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: We present a method for displaying the relative abundances of three important elements (Th, Fe, and Ti) on the same map projection of the lunar surface. Using Th-, Fe-, and Ti-elemental abundances from orbital geochemical data and assigning each element a primary color, a false-color map of the lunar surface was created. This approach is similar to the ternary diagram approach presented by Davis and Spudis with some important differences, discussed later. For the present maps, Th abundances were measured by the Lunar Prospector (LP) Gamma-Ray Spectrometer(GRS).The new LPGRS low-altitude dataset was used in this analysis. Iron and Ti weight percentages were based on Clementine spectral reflectance data smoothed to the LP low altitude footprint. This method of presentation was designed to aid in the location and recognition of three principal lunar compositions: ferroan anorthosite (FAN), mare basalts (MB), and the Mg suite/ KREEP-rich rocks on the lunar surface, with special emphasis on the highlands and specific impact basins. In addition to the recognition of these endmember rock compositions, this method is an attempt to examine the relationship between elemental compositions that do not conform readily to previously accepted or observed endmember rocks in various specific regions of interest, including eastern highlands regions centered on 150 deg longitude, and a northern highlands Th-rich region observed. The LP low-altitude data has full width at half-maximum spatial resolution of about 40 km. The Clementine spectral reflectance datasets were adapted using an equal-area, gaussian smoothing routine to this footprint. In addition, these datasets, reported in weight percent of FeO and of Ti02, were adjusted to Fe and Ti weight percentages. Each dataset was then assigned one of the three primary colors: blue for Th, red for Fe, and green for Ti. For each element, the data range was normalized to represent the ratio of each point to the maximum in the dataset. (To view the color table, go to http://cass.jsc.nasa.gov/meetings/moon99/pdf/8033.pdf.) The full range of lunar longitudes is represented, but due to the lack of coverage of the Clementine data for latitudes 〉 70 deg and 〈-70 deg, the data for these regions is excluded. The differences between this approach and the ternary diagram approach of Davis and Spudis eliminate some of the uncertainty and ambiguity of the ternary diagram approach. Rather than using a ratio of Th to Ti normalized to CI chondritic ratios, and a ternary diagram with ternary apexes located at specific endmember compositional values, elemental compositions were used independently, eliminating the errors resulting from dividing numbers that can have high uncertainties, especially at low concentration. The three elements used in this method of presentation were chosen for several reasons. One reason for the inclusion of Th in this study is that it is an accurate indicator of KREEP. Iron and Ti concentrations are both low in highland regolith, causing any small fluctuations in Th to stand out very well. In addition, Fe and Ti are good compositional indicators of different mare basalts. Mixed with red for Fe, the green for Ti produces a yellow signal in high-Ti basalts. While universally high in Fe relative to the surrounding highlands, mare basalts have a diverse range of Ti values, making Ti concentration a valuable asset to the classification and identification of different basalt types. Finally, an important constraint in element selection is the availability of the global data, both from LP and Clementine results. Data for Th, Fe, and Ti are among the highest quality of existing lunar remote-sensing data. In addition, LP data for Fe and Ti will become available, enabling these data to be incorporated into the analysis. Using upper-limit values for end member rock compositions calculated from Korotev et al., attempts were made to locate the different endmember compositions of terranes on this diagram. Most strikingly, ferroan anorthosite (Th 〈 and = 0.37 micro g/g; Fe (wt%)〈 and =2.29; Ti (wt%) 〈 and = 0.22), which should appear as an almost black, reddish color, does not appear on the diagram at any noticeable frequency. Based on this analysis, the suggestion of extensive FAN regions on the lunar surface is not strong, especially at the presently accepted values for Fe and Th. However, to make sure this effect is not due to systematic errors, a thorough investigation of the precision, accuracy, and uncertainties of the Fe, Ti, and Th abundances needs to be carried out, especially at low concentrations. A particular region of interest is an area of high Th concentrations relative to Fe and Ti content north and east of Humboldtianum Crater. First observed by Lawrence et al., this region does not coincide with any visible impact structure and comprises one of the closest approximations to pure blue (high Th, very low Ti and Fe) on the lunar surface. Such an elemental composition does not lend itself readily to classification, and presents something of an anomaly. More detailed analysis of this region is needed to understand its structure and origin. There seems to be a longitudinal asymmetry in the Th concentrations of the highlands regolith. High-Th, low-Ti, and Fe regions are located between 135 deg and 180 deg longitude and between -30 deg and +30 deg latitude. While the Th levels are not high enough to attract attention in a single elemental display, the variation in the abundance of Th relative to Fe and Ti abundances can be clearly seen. The composition that these data suggest is not well represented in the sample return suite. In addition, these regions were largely missed by the Apollo orbital ground tracks, which only covered the outer edge of the areas of interest. The LP orbital Th data represent the first information about the Th concentrations in these regions of the highlands. Additional information contained in original.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on New Views of the Moon 2: Understanding the Moon Through the Integration of Diverse Datasets; 66-68; LPI-Contrib-980
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-14
    Description: NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN27029 , 2015 Annual Meeting of the Lunar Exploration Analysis Group; Oct 20, 2015 - Oct 22, 2015; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...