ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-02-14
    Description: Posttetanic potentiation (PTP) is a common form of short-term synaptic plasticity that is generally thought to be entirely presynaptic. Consistent with that idea, PTP of evoked excitatory postsynaptic potentials at Aplysia sensory-motor neuron synapses in cell culture was reduced by presynaptic injection of a slow calcium chelator and was accompanied by an increase in the frequency but not the amplitude of spontaneous excitatory postsynaptic potentials. However, PTP was also reduced by postsynaptic injection of a rapid calcium chelator or postsynaptic hyperpolarization. Thus, PTP at these synapses is likely to involve a postsynaptic induction mechanism in addition to the known presynaptic mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bao, J X -- Kandel, E R -- Hawkins, R D -- MH 26212/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):969-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020078" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Octanol ; Action Potentials ; Animals ; Aplysia ; Calcium/physiology ; Cells, Cultured ; Chelating Agents/pharmacology ; Egtazic Acid/analogs & derivatives/pharmacology ; Long-Term Potentiation ; Motor Neurons/*physiology ; *Neuronal Plasticity ; Neurons, Afferent/*physiology ; Octanols/pharmacology ; Serotonin/pharmacology ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-12-06
    Description: One of the major limitations in the use of genetically modified mice for studying cognitive functions is the lack of regional and temporal control of gene function. To overcome these limitations, a forebrain-specific promoter was combined with the tetracycline transactivator system to achieve both regional and temporal control of transgene expression. Expression of an activated calcium-independent form of calcium-calmodulin-dependent kinase II (CaMKII) resulted in a loss of hippocampal long-term potentiation in response to 10-hertz stimulation and a deficit in spatial memory, a form of explicit memory. Suppression of transgene expression reversed both the physiological and the memory deficit. When the transgene was expressed at high levels in the lateral amygdala and the striatum but not other forebrain structures, there was a deficit in fear conditioning, an implicit memory task, that also was reversible. Thus, the CaMKII signaling pathway is critical for both explicit and implicit memory storage, in a manner that is independent of its potential role in development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayford, M -- Bach, M E -- Huang, Y Y -- Wang, L -- Hawkins, R D -- Kandel, E R -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1678-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, and Howard Hughes Medical Institute, 722 West 168 Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939850" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Brain/*physiology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Conditioning (Psychology) ; Corpus Striatum/physiology ; Doxycycline/pharmacology ; Fear ; *Gene Expression Regulation, Enzymologic ; Genes, Reporter ; Hippocampus/physiology ; Long-Term Potentiation ; Maze Learning ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuronal Plasticity ; Promoter Regions, Genetic ; Prosencephalon/physiology ; Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...