ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p〉0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures in the prone position and stand test were less than 8% for the test sessions. ANOVA results yielded a greater inter-subject variability (p.0.006) than inter-session variability (p〉0.05) for HRV in the stand test. CONCLUSION: These studies show that a 3 minute stand delivers repeatable cardiovascular heart rate and BP data in the context of this larger series of tests such as the FTT.
    Keywords: Life Sciences (General)
    Type: 56th Annual Meeting of the American College of Sports Medicine (ACSM); May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Microgravity-induced physiological changes could impair a crewmember s performance upon return to a gravity environment. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in mission-critical tasks. The Recovery from Fall/Stand Test (RFST) simulates one such task, measuring the ability to recover from a prone position and the cardiovascular response to orthostasis. The purpose of this study was to evaluate spaceflight-induced cardiovascular changes during the FTT. METHODS: Five astronauts participated in the FTT before 10-15 day missions, on landing day (R+0), and one (R+1), six (R+6) and thirty (R+30) days after landing. The RFST consisted of a 2-minute prone rest followed by a 3-minute stand during which heart rate (HR, Holter) and continuous blood pressure (BP, Finometer) were measured. Spectral heart rate variability (HRV) was calculated during the RFST to approximate autonomic function. Statistical analysis was performed with two-factor repeated measures ANOVA. RESULTS: During RFST, HR was higher on R+0 than preflight (p〈0.004). This increase in HR persisted on R+1 and R+6 during the stand portion of RFST (p〈0.026). BP was well-regulated on all test days. Parasympathetic activity was diminished on R+0 (p=0.035). Sympathovagal balance tended to be affected by spaceflight (main effect, p=0.072), appearing to be slightly elevated during postflight RFST except on R+30. Additionally, analysis of HR during the functional tasks yielded a higher HR on R+0 than preflight during 8 of 11 tasks analyzed, where all tasks had HR return to preflight values by R+30 (p〈0.05). CONCLUSION: Spaceflight causes an increase in HR, decrease in parasympathetic activity, and increase in sympathovagal balance, which we confirmed during RFST. These spaceflight-induced changes seen in the RFST, along with the increased postflight HR in most functional tasks, can be used to assess functional performance after short-duration spaceflight.
    Keywords: Life Sciences (General)
    Type: JSC-CN-21884 , 18th IAA Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Baroreflex sensitivity (BRS) decreases during spaceflight and simulated spaceflight (head down bed rest [BR]). However, previous studies have only examined BRS in response to a limited blood pressure (BP) range or to a single sudden change in BP. PURPOSE: The purpose of this study was to examine BRS during 90 days of 6deg head-down tilt BR over a broad range of BP perturbations. METHODS: Nineteen normal volunteers (12M, 7F) were tested one day before BR, and then near BR days 30, 60 and 90. BP was pharmacologically altered by continuous infusions of phenylephrine (PE) and sodium nitroprusside (SNP). Electrocardiogram and continuous BP were collected during 10 min of normal saline (NS), followed by increasing concentrations of PE (10 min each of 0.4, 0.8 and 1.6 micro-g/kg/min). After a 20 min break, NS was infused again for 10 min, followed by increasing concentrations of SNP (10 min each of 0.4, 0.8, 1.2 micro-g/kg/min). Baroreceptor sensitivity was measured as the slope of a sequence of 3 or more beats in which the systolic BP and following R-R interval (RR) both increased or decreased. Spectral heart rate variability (HRV) and mean RR were analyzed using data from only the NS infusions. Two-way repeated-measures analysis of variance was performed to examine the effects of BR and gender. RESULTS: RR decreased (p〈0.001) from pre- BR across BR days. High frequency in normalized units, a measure of parasympathetic activity, decreased with BR (p=0.027) and was lower (p=0.046) in men (0.39+/-0.02, mean+/-SEM) than women (0.48+/-0.02). The spontaneous baroreflex slope, our measure of BRS, increased with PE and decreased with SNP across BR (p〈0.001). The percentage decrease in BRS from pre- to post-BR appeared to be larger in women (43.6+/-7.0%) than in men (31.3+/-3.9%, p=0.06). CONCLUSION: Parasympathetic activity and baroreflex sensitivity decrease during 90 days of BR, and BRS tends to diminish more in women than in men.
    Keywords: Life Sciences (General)
    Type: 56th Annual Meeting of the American College of Sports Medicine (ACSM); May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...