ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 90; 3; 997-1006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.
    Keywords: Life Sciences (General)
    Type: JSC-CN-22375 , 8th Symposium on the Role of the Vestibular Organs in Space Exploration; Apr 08, 2011 - Apr 10, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.
    Keywords: Life Sciences (General)
    Type: Seventh Symposium on the Role of the Vestibular; Jun 07, 2006 - Jun 09, 2006; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.
    Keywords: Life Sciences (General)
    Type: 24th Annual Houston Conference on Biomedical; Feb 08, 2007 - Feb 09, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface.
    Keywords: Lunar and Planetary Science and Exploration; Aerospace Medicine
    Type: Conference on International Space Station Utilization; Oct 15, 2001 - Oct 18, 2001; Kennedy Space Center, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: The goal of the present study was to investigate the adaptive effects of variation in the direction of optic flow, experienced during linear treadmill walking, on modifying locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 kilometers per hour for 24 minutes while viewing the interior of a 3D virtual scene projected onto a screen 1.5 in in front of them. The virtual scene depicted constant self-motion equivalent to either 1) walking around the perimeter of a room to one s left (Rotating Room group) 2) walking down the center of a hallway (Infinite Hallway group). The scene was static for the first 4 minutes, and then constant rate self-motion was simulated for the remaining 20 minutes. Before and after the treadmill locomotion adaptation period, subjects performed five stepping trials where in each trial they marched in place to the beat of a metronome at 90 steps/min while blindfolded in a quiet room. The subject's final heading direction (deg), final X (for-aft, cm) and final Y (medio-lateral, cm) positions were measured for each trial. During the treadmill locomotion adaptation period subject's 3D torso position was measured. We found that subjects in the Rotating Room group as compared to the Infinite Hallway group: 1) showed significantly greater deviation during post exposure testing in the heading direction and Y position opposite to the direction of optic flow experienced during treadmill walking 2) showed a significant monotonically increasing torso yaw angular rotation bias in the direction of optic flow during the treadmill adaptation exposure period. Subjects in both groups showed greater forward translation (in the +X direction) during the post treadmill stepping task that differed significantly from their pre exposure performance. Subjects in both groups reported no perceptual deviation in position during the stepping tasks. We infer that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of sensory-motor integration in the control of position and trajectory during locomotion which functionally reflects adaptive changes in the integration of visual, vestibular, and proprioceptive cues. Such an adaptation in the control of position and heading direction during locomotion due to the congruence of sensory information demonstrates the potential for adaptive transfer between sensorimotor systems and suggests a common neural site for the processing and self-motion perception and concurrent adaptation in motor output. This will result in lack of subjects perception of deviation of position and trajectory during the post treadmill step test while blind folded.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance adaptability. These results indicate that SA training techniques can be added to existing treadmill exercise equipment and procedures to produce a single integrated countermeasure system to improve performance of astro/cosmonauts during prolonged exploratory space missions.
    Keywords: Life Sciences (General)
    Type: JSC-CN-23956 , Major Problems of Space Life Sciences Conference; Oct 20, 2011 - Oct 21, 2011; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...